Detailed Information

Cited 37 time in webofscience Cited 30 time in scopus
Metadata Downloads

A biodegradable and self-deployable electronic tent electrode for brain cortex interfacing

Authors
Bae, Jae-YoungHwang, Gyeong-SeokKim, Young-SeoJeon, JooikChae, MinseongKim, Joon-WooLee, SianKim, SeongchanLee, Soo-HwanChoi, Sung-GeunLee, Ju-YongLee, Jae-HwanKim, Kyung-SubPark, Joo-HyeonLee, Woo-JinKim, Yu-ChanLee, Kang-SikKim, JeonghyunLee, HyojinHyun, Jung KeunKim, Ju-YoungKang, Seung-Kyun
Issue Date
Sep-2024
Publisher
NATURE PUBLISHING GROUP
Citation
Nature Electronics, v.7, no.9, pp 815 - 828
Pages
14
Indexed
SCIE
SCOPUS
Journal Title
Nature Electronics
Volume
7
Number
9
Start Page
815
End Page
828
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/73856
DOI
10.1038/s41928-024-01216-x
ISSN
2520-1131
Abstract
High-density, large-area electronic interfaces are a key component of brain-computer interface technologies. However, current designs typically require patients to undergo invasive procedures, which can lead to various complications. Here, we report a biodegradable and self-deployable tent electrode for brain cortex interfacing. The system can be integrated with multiplexing arrays and a wireless module for near-field communication and data transfer. It can be programmably packaged and self-deployed using a syringe for minimally invasive delivery through a small hole. Following delivery, it can expand to cover an area around 200 times its initial size. The electrode also naturally decomposes within the body after use, minimizing the impact of subsequent removal surgery. Through in vivo demonstrations, we show that our cortical-interfacing platform can be used to stimulate large populations of cortical activities. A biodegradable electronic tent electrode array that can be inserted into the brain cortex using a syringe, where it then expands to 200 times its original size, can be used for electrocorticography monitoring.
Files in This Item
There are no files associated with this item.
Appears in
Collections
약학대학 > 약학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Seongchan photo

Kim, Seongchan
약학대학 (약학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE