Detailed Information

Cited 10 time in webofscience Cited 12 time in scopus
Metadata Downloads

Learning Optimal Q-Function Using Deep Boltzmann Machine for Reliable Trading of Cryptocurrency

Full metadata record
DC Field Value Language
dc.contributor.authorBu, Seok-Jun-
dc.contributor.authorCho, Sung-Bae-
dc.date.accessioned2024-12-03T02:30:34Z-
dc.date.available2024-12-03T02:30:34Z-
dc.date.issued2018-
dc.identifier.issn0302-9743-
dc.identifier.issn1611-3349-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/73698-
dc.description.abstractThe explosive price volatility from the end of 2017 to January 2018 shows that bitcoin is a high risk asset. The deep reinforcement algorithm is straightforward idea for directly outputs the market management actions to achieve higher profit instead of higher price-prediction accuracy. However, existing deep reinforcement learning algorithms including Q-learning are also limited to problems caused by enormous searching space. We propose a combination of double Q-network and unsupervised pre-training using Deep Boltzmann Machine (DBM) to generate and enhance the optimal Q-function in cryptocurrency trading. We obtained the profit of 2,686% in simulation, whereas the best conventional model had that of 2,087% for the same period of test. In addition, our model records 24% of profit while market price significantly drops by -64%.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherSpringer Verlag-
dc.titleLearning Optimal Q-Function Using Deep Boltzmann Machine for Reliable Trading of Cryptocurrency-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1007/978-3-030-03493-1_49-
dc.identifier.scopusid2-s2.0-85057076158-
dc.identifier.wosid000582456500049-
dc.identifier.bibliographicCitationLecture Notes in Computer Science, v.11314, pp 468 - 480-
dc.citation.titleLecture Notes in Computer Science-
dc.citation.volume11314-
dc.citation.startPage468-
dc.citation.endPage480-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordPlusNETWORKS-
dc.subject.keywordPlusSTOCK-
dc.subject.keywordAuthorDeep reinforcement learning-
dc.subject.keywordAuthorQ-network-
dc.subject.keywordAuthorDeep Boltzmann Machine-
dc.subject.keywordAuthorPortfolio management-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Seok-Jun, Buu photo

Seok-Jun, Buu
IT공과대학 (컴퓨터공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE