Cited 25 time in
A Hybrid Deep Learning System of CNN and LRCN to Detect Cyberbullying from SNS Comments
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Bu, Seok-Jun | - |
| dc.contributor.author | Cho, Sung-Bae | - |
| dc.date.accessioned | 2024-12-03T02:01:01Z | - |
| dc.date.available | 2024-12-03T02:01:01Z | - |
| dc.date.issued | 2018-06 | - |
| dc.identifier.issn | 0302-9743 | - |
| dc.identifier.issn | 1611-3349 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/73655 | - |
| dc.description.abstract | The cyberbullying is becoming a significant social issue, in proportion to the proliferation of Social Network Service (SNS). The cyberbullying commentaries can be categorized into syntactic and semantic subsets. In this paper, we propose an ensemble method of the two deep learning models: One is character-level CNN which captures low-level syntactic information from the sequence of characters and is robust to noise using the transfer learning. The other is word-level LRCN which captures high-level semantic information from the sequence of words, complementing the CNN model. Empirical results show that the performance of the ensemble method is significantly enhanced, outperforming the state-of-the-art methods for detecting cyberbullying comment. The model is analyzed by t-SNE algorithm to investigate the mutually cooperative relations between syntactic and semantic models. | - |
| dc.format.extent | 12 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Springer Verlag | - |
| dc.title | A Hybrid Deep Learning System of CNN and LRCN to Detect Cyberbullying from SNS Comments | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1007/978-3-319-92639-1_47 | - |
| dc.identifier.scopusid | 2-s2.0-85048857617 | - |
| dc.identifier.wosid | 000443487900047 | - |
| dc.identifier.bibliographicCitation | Lecture Notes in Computer Science, v.10870, pp 561 - 572 | - |
| dc.citation.title | Lecture Notes in Computer Science | - |
| dc.citation.volume | 10870 | - |
| dc.citation.startPage | 561 | - |
| dc.citation.endPage | 572 | - |
| dc.type.docType | Proceedings Paper | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Computer Science | - |
| dc.relation.journalWebOfScienceCategory | Computer Science, Artificial Intelligence | - |
| dc.relation.journalWebOfScienceCategory | Computer Science, Theory & Methods | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
