Detailed Information

Cited 39 time in webofscience Cited 46 time in scopus
Metadata Downloads

3D-Convolutional Neural Network with Generative Adversarial Network and Autoencoder for Robust Anomaly Detection in Video Surveillance

Full metadata record
DC Field Value Language
dc.contributor.authorShin, Wonsup-
dc.contributor.authorBu, Seok-Jun-
dc.contributor.authorCho, Sung-Bae-
dc.date.accessioned2024-12-03T02:01:01Z-
dc.date.available2024-12-03T02:01:01Z-
dc.date.issued2020-06-
dc.identifier.issn0129-0657-
dc.identifier.issn1793-6462-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/73649-
dc.description.abstractAs the surveillance devices proliferate, various machine learning approaches for video anomaly detection have been attempted. We propose a hybrid deep learning model composed of a video feature extractor trained by generative adversarial network with deficient anomaly data and an anomaly detector boosted by transferring the extractor. Experiments with UCSD pedestrian dataset show that it achieves 94.4% recall and 86.4% precision, which is the competitive performance in video anomaly detection.-
dc.language영어-
dc.language.isoENG-
dc.publisherWorld Scientific Publishing Co-
dc.title3D-Convolutional Neural Network with Generative Adversarial Network and Autoencoder for Robust Anomaly Detection in Video Surveillance-
dc.typeArticle-
dc.publisher.location싱가폴-
dc.identifier.doi10.1142/S0129065720500343-
dc.identifier.scopusid2-s2.0-85086177474-
dc.identifier.wosid000538637500006-
dc.identifier.bibliographicCitationInternational Journal of Neural Systems, v.30, no.6-
dc.citation.titleInternational Journal of Neural Systems-
dc.citation.volume30-
dc.citation.number6-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.subject.keywordPlusEVENT DETECTION-
dc.subject.keywordAuthorVideo anomaly detection-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthortransfer learning-
dc.subject.keywordAuthorgenerative adversarial network-
dc.subject.keywordAuthor3D CNN-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Seok-Jun, Buu photo

Seok-Jun, Buu
IT공과대학 (컴퓨터공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE