Detailed Information

Cited 10 time in webofscience Cited 10 time in scopus
Metadata Downloads

Enhancing lithium titanate anode performance through surface modification with fluorine and nitrogen co-doped carbon nanotubes

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Soobeom-
dc.contributor.authorKim, Seoyeong-
dc.contributor.authorKang, Seo Hui-
dc.contributor.authorRoh, Kwang Chul-
dc.contributor.authorAn, Geon-Hyoung-
dc.date.accessioned2024-12-03T01:31:19Z-
dc.date.available2024-12-03T01:31:19Z-
dc.date.issued2024-11-
dc.identifier.issn0925-8388-
dc.identifier.issn1873-4669-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/73556-
dc.description.abstractIn this study, we explore the efficacy of fluorine and nitrogen co-doped carbon nanotubes (F@N-CNT) as a novel surface modifier for lithium titanate (LTO) anodes in lithium-ion batteries (LIBs). The integration of F@N-CNT enhances the electrochemical properties of LTO anodes by improving electrical conductivity and facilitating lithium-ion diffusion., Electrodes modified with F@N-CNT exhibited significant improvements in capacity retention, achieving 71 % capacity retention over 200 cycles at 2 C and delivering energy capacities up to 162.9 mAh g−1 at 0.2 C, with an impressive high-rate performance of 74.8 mAh g−1 at 30 C. This study demonstrates that F@N-CNT effectively forms a conductive network within the LTO matrix, resulting in superior high-rate performance and stability. It presents a comprehensive analysis of the microstructural changes induced by co-doping and elucidates their impact on the electrochemical performance, providing valuable insights into the design of high-performance anodes for future energy storage applications. This approach not only addresses the current limitations of LTO anodes but also introduces a scalable strategy for enhancing the overall functionality of LIBs. © 2024 Elsevier B.V.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleEnhancing lithium titanate anode performance through surface modification with fluorine and nitrogen co-doped carbon nanotubes-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.1016/j.jallcom.2024.175768-
dc.identifier.scopusid2-s2.0-85200821292-
dc.identifier.wosid001294536600001-
dc.identifier.bibliographicCitationJournal of Alloys and Compounds, v.1004-
dc.citation.titleJournal of Alloys and Compounds-
dc.citation.volume1004-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusLI4TI5O12 ANODE-
dc.subject.keywordPlusRATE CAPABILITY-
dc.subject.keywordPlusION BATTERY-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusINSERTION-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusSITE-
dc.subject.keywordAuthorCarbon nanotubes-
dc.subject.keywordAuthorDoping-
dc.subject.keywordAuthorLithium titanate-
dc.subject.keywordAuthorLithium-ion batteries-
Files in This Item
There are no files associated with this item.
Appears in
Collections
학과간협동과정 > 에너지시스템공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE