Cited 4 time in
The Survival of Human Intervertebral Disc Nucleus Pulposus Cells under Oxidative Stress Relies on the Autophagy Triggered by Delphinidin
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Bahar, Md Entaz | - |
| dc.contributor.author | Hwang, Jin Seok | - |
| dc.contributor.author | Lai, Trang Huyen | - |
| dc.contributor.author | Byun, June-Ho | - |
| dc.contributor.author | Kim, Dong-Hee | - |
| dc.contributor.author | Kim, Deok Ryong | - |
| dc.date.accessioned | 2024-12-03T00:30:50Z | - |
| dc.date.available | 2024-12-03T00:30:50Z | - |
| dc.date.issued | 2024-07 | - |
| dc.identifier.issn | 2076-3921 | - |
| dc.identifier.issn | 2076-3921 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/73452 | - |
| dc.description.abstract | Delphinidin (Delp), a natural antioxidant, has shown promise in treating age-related ailments such as osteoarthritis (OA). This study investigates the impact of delphinidin on intervertebral disc degeneration (IVDD) using human nucleus pulposus cells (hNPCs) subjected to hydrogen peroxide. Various molecular and cellular assays were employed to assess senescence, extracellular matrix (ECM) degradation markers, and the activation of AMPK and autophagy pathways. Initially, oxidative stress (OS)-induced hNPCs exhibited notably elevated levels of senescence markers like p53 and p21, which were mitigated by Delp treatment. Additionally, Delp attenuated IVDD characteristics including apoptosis and ECM degradation markers in OS-induced senescence (OSIS) hNPCs by downregulating MMP-13 and ADAMTS-5 while upregulating COL2A1 and aggrecans. Furthermore, Delp reversed the increased ROS production and reduced autophagy activation observed in OSIS hNPCs. Interestingly, the ability of Delp to regulate cellular senescence and ECM balance in OSIS hNPCs was hindered by autophagy inhibition using CQ. Remarkably, Delp upregulated SIRT1 and phosphorylated AMPK expression while downregulating mTOR phosphorylation in the presence of AICAR (AMPK activator), and this effect was reversed by Compound C, AMPK inhibitor. In summary, our findings suggest that Delp can safeguard hNPCs from oxidative stress by promoting autophagy through the SIRT1/AMPK/mTOR pathway. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | MDPI AG | - |
| dc.title | The Survival of Human Intervertebral Disc Nucleus Pulposus Cells under Oxidative Stress Relies on the Autophagy Triggered by Delphinidin | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.3390/antiox13070759 | - |
| dc.identifier.scopusid | 2-s2.0-85199606417 | - |
| dc.identifier.wosid | 001276492600001 | - |
| dc.identifier.bibliographicCitation | Antioxidants, v.13, no.7 | - |
| dc.citation.title | Antioxidants | - |
| dc.citation.volume | 13 | - |
| dc.citation.number | 7 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Biochemistry & Molecular Biology | - |
| dc.relation.journalResearchArea | Pharmacology & Pharmacy | - |
| dc.relation.journalResearchArea | Food Science & Technology | - |
| dc.relation.journalWebOfScienceCategory | Biochemistry & Molecular Biology | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Medicinal | - |
| dc.relation.journalWebOfScienceCategory | Food Science & Technology | - |
| dc.subject.keywordPlus | APOPTOSIS | - |
| dc.subject.keywordPlus | SENESCENCE | - |
| dc.subject.keywordPlus | DEGENERATION | - |
| dc.subject.keywordPlus | INDUCTION | - |
| dc.subject.keywordPlus | CYANIDIN | - |
| dc.subject.keywordAuthor | delphinidin | - |
| dc.subject.keywordAuthor | IVDD | - |
| dc.subject.keywordAuthor | oxidative stress | - |
| dc.subject.keywordAuthor | senescence | - |
| dc.subject.keywordAuthor | apoptosis | - |
| dc.subject.keywordAuthor | ECM degradation | - |
| dc.subject.keywordAuthor | autophagy | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
