Detailed Information

Cited 8 time in webofscience Cited 9 time in scopus
Metadata Downloads

Comparison of Electrodes for High-Performance Electrochemical Capacitors: Multi-Layer MnO<sub>2</sub>/Pt and Composite MnO<sub>2</sub>/Pt on Carbon Nanofibres

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Yu-Jin-
dc.contributor.authorAn, Geon-Hyoung-
dc.contributor.authorAhn, Hyo-Jin-
dc.date.accessioned2024-12-03T00:30:43Z-
dc.date.available2024-12-03T00:30:43Z-
dc.date.issued2015-11-
dc.identifier.issn1533-4880-
dc.identifier.issn1533-4899-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/73395-
dc.description.abstractFour different types of electrodes for high-performance electrochemical capacitors were prepared using electrospinning method and/or impregnation methods: (1) conventional carbon nanofibres (CNF) supports, and CNFs decorated with (2) MnO2 nanophases, (3) multi-layer MnO2/Pt nanophases, and (4) composite MnO2 and Pt nanophases. Their morphological, structural, chemical, and electrochemical properties were characterized using field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and galvanostatic charge/discharge measurements. Composite MnO2 and Pt nanophases decorated on the CNFs exhibited superior capacitance (similar to 252.3 F/g at 10 mV/s), excellent capacitance retention (similar to 93.5% after 300 cycles), and high energy densities (13.53-18.06 Wh/kg). The enhanced electrochemical performances can be explained by the composite structure, presenting well-dispersed MnO2 nanophases leading to high capacitance, and well-dispersed Pt nanophases leading to improved electrical conductivity.-
dc.format.extent6-
dc.language영어-
dc.language.isoENG-
dc.publisherAmerican Scientific Publishers-
dc.titleComparison of Electrodes for High-Performance Electrochemical Capacitors: Multi-Layer MnO&lt;sub&gt;2&lt;/sub&gt;/Pt and Composite MnO&lt;sub&gt;2&lt;/sub&gt;/Pt on Carbon Nanofibres-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1166/jnn.2015.11518-
dc.identifier.scopusid2-s2.0-84944719001-
dc.identifier.wosid000365554700105-
dc.identifier.bibliographicCitationJournal of Nanoscience and Nanotechnology, v.15, no.11, pp 8931 - 8936-
dc.citation.titleJournal of Nanoscience and Nanotechnology-
dc.citation.volume15-
dc.citation.number11-
dc.citation.startPage8931-
dc.citation.endPage8936-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience &amp; Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience &amp; Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusDOUBLE-LAYER CAPACITORS-
dc.subject.keywordPlusASYMMETRIC SUPERCAPACITORS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusSHELL-
dc.subject.keywordPlusPOWER-
dc.subject.keywordPlusAG-
dc.subject.keywordAuthorElectrochemical Capacitors-
dc.subject.keywordAuthorElectrospinning-
dc.subject.keywordAuthorImpregnation-
dc.subject.keywordAuthorCarbon Nanofibres-
dc.subject.keywordAuthorComposites-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE