Detailed Information

Cited 44 time in webofscience Cited 46 time in scopus
Metadata Downloads

Surface modification of RuO2 nanoparticles–carbon nanofiber composites for electrochemical capacitors

Full metadata record
DC Field Value Language
dc.contributor.authorAn, Geon-Hyoung-
dc.contributor.authorAhn, Hyo-Jin-
dc.date.accessioned2024-12-03T00:30:43Z-
dc.date.available2024-12-03T00:30:43Z-
dc.date.issued2015-05-
dc.identifier.issn1572-6657-
dc.identifier.issn1873-2569-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/73393-
dc.description.abstractSurface-modified RuO2 nanoparticles-carbon nanofiber (CNF) composites are synthesized using electro-spinning and acid treatment in sequence, and their structure, morphology, chemical states, and electrochemical performance are demonstrated. The surface-modified RuO2-CNF composites exhibited the highest specific capacitance of 224.6 F g(-1), high-rate performance with capacitance retention of 80%, superior energy density of 26.9-21.5 Wh kg(-1), and excellent cycling stability of 90% after up to 3000 cycles, compared to the conventional CNFs, surface-modified CNFs, and unmodified RuO2 nanoparticles-CNF composites. Their improved electrochemical performance can be explained as synergistic effect of well-distributed RuO2 nanoparticles within the matrix of CNFs and surface modification induced by the increased number of oxygen-containing functional groups, which results in increased capacitance and improved high-rate performance due to Faradaic redox reactions and improved wettability. (C) 2015 Elsevier B.V. All rights reserved.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleSurface modification of RuO2 nanoparticles–carbon nanofiber composites for electrochemical capacitors-
dc.title.alternativeSurface modification of RuO<sub>2</sub> nanoparticles-carbon nanofiber composites for electrochemical capacitors-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.1016/j.jelechem.2015.03.009-
dc.identifier.scopusid2-s2.0-84924813131-
dc.identifier.wosid000353850100005-
dc.identifier.bibliographicCitationJournal of Electroanalytical Chemistry, v.744, pp 32 - 36-
dc.citation.titleJournal of Electroanalytical Chemistry-
dc.citation.volume744-
dc.citation.startPage32-
dc.citation.endPage36-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusELECTRODE MATERIAL-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSUPERCAPACITOR-
dc.subject.keywordPlusSHELL-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordAuthorElectrochemical capacitors-
dc.subject.keywordAuthorSurface modification-
dc.subject.keywordAuthorNanostructured composites-
dc.subject.keywordAuthorRuthenium oxide-
dc.subject.keywordAuthorCarbon nanofibers-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE