Cited 5 time in
Optimal parameter selections for a general Halpern iteration
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | He, Songnian | - |
| dc.contributor.author | Wu, Tao | - |
| dc.contributor.author | Cho, Yeol Je | - |
| dc.contributor.author | Rassias, Themistocles M. | - |
| dc.date.accessioned | 2024-12-02T23:30:57Z | - |
| dc.date.available | 2024-12-02T23:30:57Z | - |
| dc.date.issued | 2019-12 | - |
| dc.identifier.issn | 1017-1398 | - |
| dc.identifier.issn | 1572-9265 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/73109 | - |
| dc.description.abstract | Let C be a closed affine subset of a real Hilbert space H and T : C -> C be a nonexpansive mapping. In this paper, for any fixed u is an element of C, a general Halpern iteration process: {x(0) is an element of C, x(n+1) = t(n)u + (1 - t(n))Tx(n), n >= 0, is considered for finding a fixed point of T nearest to u, where the parameter sequence {t(n)} is selected in the real number field, R. The core problem to be addressed in this paper is to find the optimal parameter sequence so that this iteration process has the optimal convergence rate and to give some numerical results showing advantages of our algorithms. Also, we study the problem of selecting the optimal parameters for a general viscosity approximation method and apply the results obtained from this study to solve a class of variational inequalities. | - |
| dc.format.extent | 18 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | SPRINGER | - |
| dc.title | Optimal parameter selections for a general Halpern iteration | - |
| dc.type | Article | - |
| dc.publisher.location | 네델란드 | - |
| dc.identifier.doi | 10.1007/s11075-018-00650-1 | - |
| dc.identifier.scopusid | 2-s2.0-85059692664 | - |
| dc.identifier.wosid | 000500985600003 | - |
| dc.identifier.bibliographicCitation | NUMERICAL ALGORITHMS, v.82, no.4, pp 1171 - 1188 | - |
| dc.citation.title | NUMERICAL ALGORITHMS | - |
| dc.citation.volume | 82 | - |
| dc.citation.number | 4 | - |
| dc.citation.startPage | 1171 | - |
| dc.citation.endPage | 1188 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.subject.keywordPlus | STRONG-CONVERGENCE THEOREMS | - |
| dc.subject.keywordPlus | APPROXIMATING FIXED-POINTS | - |
| dc.subject.keywordPlus | NONEXPANSIVE-MAPPINGS | - |
| dc.subject.keywordPlus | PROJECTION METHOD | - |
| dc.subject.keywordPlus | WEAK-CONVERGENCE | - |
| dc.subject.keywordPlus | OPERATORS | - |
| dc.subject.keywordPlus | ISHIKAWA | - |
| dc.subject.keywordAuthor | Fixed point | - |
| dc.subject.keywordAuthor | Nonexpansive mapping | - |
| dc.subject.keywordAuthor | Strong convergence | - |
| dc.subject.keywordAuthor | Halpern iteration | - |
| dc.subject.keywordAuthor | Optimal parameter selection | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
