Cited 2 time in
Approximating Fixed Points of Bregman Generalized <i>α</i>-Nonexpansive Mappings
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Muangchoo, Kanikar | - |
| dc.contributor.author | Kumam, Poom | - |
| dc.contributor.author | Cho, Yeol Je | - |
| dc.contributor.author | Dhompongsa, Sompong | - |
| dc.contributor.author | Ekvittayaniphon, Sakulbuth | - |
| dc.date.accessioned | 2024-12-02T23:30:56Z | - |
| dc.date.available | 2024-12-02T23:30:56Z | - |
| dc.date.issued | 2019-08 | - |
| dc.identifier.issn | 2227-7390 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/73091 | - |
| dc.description.abstract | In this paper, we introduce a new class of Bregman generalized alpha-nonexpansive mappings in terms of the Bregman distance. We establish several weak and strong convergence theorems of the Ishikawa and Noor iterative schemes for Bregman generalized alpha-nonexpansive mappings in Banach spaces. A numerical example is given to illustrate the main results of fixed point approximation using Halpern's algorithm. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | MDPI | - |
| dc.title | Approximating Fixed Points of Bregman Generalized <i>α</i>-Nonexpansive Mappings | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.3390/math7080709 | - |
| dc.identifier.scopusid | 2-s2.0-85070461818 | - |
| dc.identifier.wosid | 000482856500008 | - |
| dc.identifier.bibliographicCitation | MATHEMATICS, v.7, no.8 | - |
| dc.citation.title | MATHEMATICS | - |
| dc.citation.volume | 7 | - |
| dc.citation.number | 8 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.subject.keywordPlus | CONVERGENCE THEOREMS | - |
| dc.subject.keywordPlus | WEAK-CONVERGENCE | - |
| dc.subject.keywordPlus | ITERATION | - |
| dc.subject.keywordAuthor | fixed point | - |
| dc.subject.keywordAuthor | Bregman distance | - |
| dc.subject.keywordAuthor | Bregman function | - |
| dc.subject.keywordAuthor | Bregman-Opial property | - |
| dc.subject.keywordAuthor | generalized alpha-nonexpansive mapping | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
