Detailed Information

Cited 122 time in webofscience Cited 168 time in scopus
Metadata Downloads

Transportation sentiment analysis using word embedding and ontology-based topic modeling

Full metadata record
DC Field Value Language
dc.contributor.authorAli, Farman-
dc.contributor.authorKwak, Daehan-
dc.contributor.authorKhan, Pervez-
dc.contributor.authorEl-Sappagh, Shaker-
dc.contributor.authorAli, Amjad-
dc.contributor.authorUllah, Sana-
dc.contributor.authorKim, Kye Hyun-
dc.contributor.authorKwak, Kyung-Sup-
dc.date.accessioned2024-12-02T23:30:53Z-
dc.date.available2024-12-02T23:30:53Z-
dc.date.issued2019-06-
dc.identifier.issn0950-7051-
dc.identifier.issn1872-7409-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/73026-
dc.description.abstractSocial networks play a key role in providing a new approach to collecting information regarding mobility and transportation services. To study this information, sentiment analysis can make decent observations to support intelligent transportation systems (ITSs) in examining traffic control and management systems. However, sentiment analysis faces technical challenges: extracting meaningful information from social network platforms, and the transformation of extracted data into valuable information. In addition, accurate topic modeling and document representation are other challenging tasks in sentiment analysis. We propose an ontology and latent Dirichlet allocation (OLDA)-based topic modeling and word embedding approach for sentiment classification. The proposed system retrieves transportation content from social networks, removes irrelevant content to extract meaningful information, and generates topics and features from extracted data using OLDA. It also represents documents using word embedding techniques, and then employs lexicon-based approaches to enhance the accuracy of the word embedding model. The proposed ontology and the intelligent model are developed using Web Ontology Language and Java, respectively. Machine learning classifiers are used to evaluate the proposed word embedding system. The method achieves accuracy of 93%, which shows that the proposed approach is effective for sentiment classification. (C) 2019 Elsevier B.V. All rights reserved.-
dc.format.extent16-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER-
dc.titleTransportation sentiment analysis using word embedding and ontology-based topic modeling-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.knosys.2019.02.033-
dc.identifier.scopusid2-s2.0-85062661528-
dc.identifier.wosid000468718800004-
dc.identifier.bibliographicCitationKNOWLEDGE-BASED SYSTEMS, v.174, pp 27 - 42-
dc.citation.titleKNOWLEDGE-BASED SYSTEMS-
dc.citation.volume174-
dc.citation.startPage27-
dc.citation.endPage42-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.subject.keywordPlusTWITTER-
dc.subject.keywordAuthorSocial network analysis-
dc.subject.keywordAuthorSentiment analysis-
dc.subject.keywordAuthorTopic modeling-
dc.subject.keywordAuthorMobility users-
dc.subject.keywordAuthorWord embedding-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE