Detailed Information

Cited 157 time in webofscience Cited 157 time in scopus
Metadata Downloads

Hydrogen Isotope Separation in Confined Nanospaces: Carbons, Zeolites, Metal-Organic Frameworks, and Covalent Organic Frameworks

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Jin Yeong-
dc.contributor.authorOh, Hyunchul-
dc.contributor.authorMoon, Hoi Ri-
dc.date.accessioned2024-12-02T23:30:48Z-
dc.date.available2024-12-02T23:30:48Z-
dc.date.issued2019-05-
dc.identifier.issn0935-9648-
dc.identifier.issn1521-4095-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/72969-
dc.description.abstractOne of the greatest challenges of modern separation technology is separating isotope mixtures in high purity. The separation of hydrogen isotopes can create immense economic value by producing valuable deuterium (D) and tritium (T), which are irreplaceable for various industrial and scientific applications. However, current separation methods suffer from low separation efficiency owing to the similar chemical properties of isotopes; thus, high-purity isotopes are not easily achieved. Recently, nanoporous materials have been proposed as promising candidates and are supported by a newly proposed separation mechanism, i.e., quantum effects. Herein, the fundamentals of the quantum sieving effect of hydrogen isotopes in nanoporous materials are discussed, which are mainly kinetic quantum sieving and chemical-affinity quantum sieving, including the recent advances in the analytical techniques. As examples of nanoporous materials, carbons, zeolites, metal-organic frameworks, and covalent organic frameworks are addressed from computational and experimental standpoints. Understanding the quantum sieving effect in nanospaces and the tailoring of porous materials based on it will open up new opportunities to develop a highly efficient and advanced isotope separation systems.-
dc.language영어-
dc.language.isoENG-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleHydrogen Isotope Separation in Confined Nanospaces: Carbons, Zeolites, Metal-Organic Frameworks, and Covalent Organic Frameworks-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1002/adma.201805293-
dc.identifier.scopusid2-s2.0-85059203050-
dc.identifier.wosid000471970500013-
dc.identifier.bibliographicCitationADVANCED MATERIALS, v.31, no.20-
dc.citation.titleADVANCED MATERIALS-
dc.citation.volume31-
dc.citation.number20-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusPRESSURE SWING ADSORPTION-
dc.subject.keywordPlusMOLECULAR-SIEVE-
dc.subject.keywordPlusACTIVATED CARBON-
dc.subject.keywordPlusGAS-
dc.subject.keywordPlusH-2-
dc.subject.keywordPlusD-2-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusDEUTERIUM-
dc.subject.keywordPlusMEMBRANES-
dc.subject.keywordAuthorchemical affinity quantum sieving-
dc.subject.keywordAuthorhydrogen isotopes-
dc.subject.keywordAuthorisotope separation-
dc.subject.keywordAuthorkinetic quantum sieving-
dc.subject.keywordAuthorporous materials-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE