Pharmacophore Modelling-Based Drug Repurposing Approaches for SARS-CoV-2 Therapeuticsopen access
- Authors
- Rampogu, Shailima; Lee, Keun Woo
- Issue Date
- May-2021
- Publisher
- FRONTIERS MEDIA SA
- Keywords
- SARS-CoV-2; novel coronavirus; COVID-19; drug repurposing; pharmacophore modelling
- Citation
- FRONTIERS IN CHEMISTRY, v.9
- Indexed
- SCIE
SCOPUS
- Journal Title
- FRONTIERS IN CHEMISTRY
- Volume
- 9
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/72946
- DOI
- 10.3389/fchem.2021.636362
- ISSN
- 2296-2646
- Abstract
- The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating effect globally with no effective treatment. The swift strategy to find effective treatment against coronavirus disease 2019 (COVID-19) is to repurpose the approved drugs. In this pursuit, an exhaustive computational method has been used on the DrugBank compounds targeting nsp16/nsp10 complex (PDB code: 6W4H). A structure-based pharmacophore model was generated, and the selected model was escalated to screen DrugBank database, resulting in three compounds. These compounds were subjected to molecular docking studies at the protein-binding pocket employing the CDOCKER module available with the Discovery Studio v18. In order to discover potential candidate compounds, the co-crystallized compound S-adenosyl methionine (SAM) was used as the reference compound. Additionally, the compounds remdesivir and hydroxycholoroquine were employed for comparative docking. The results have shown that the three compounds have demonstrated a higher dock score than the reference compounds and were upgraded to molecular dynamics simulation (MDS) studies. The MDS results demonstrated that the three compounds, framycetin, kanamycin, and tobramycin, are promising candidate compounds. They have represented a stable binding mode at the targets binding pocket with an average protein backbone root mean square deviation below 0.3 nm. Additionally, they have prompted the hydrogen bonds during the entire simulations, inferring that the compounds have occupied the active site firmly. Taken together, our findings propose framycetin, kanamycin, and tobramycin as potent putative inhibitors for COVID-19 therapeutics.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - ETC > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.