Cited 0 time in
On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Saddiqa, Maryam | - |
| dc.contributor.author | Farid, Ghulam | - |
| dc.contributor.author | Ullah, Saleem | - |
| dc.contributor.author | Jung, Chahn Yong | - |
| dc.contributor.author | Shim, Soo Hak | - |
| dc.date.accessioned | 2024-12-02T23:00:48Z | - |
| dc.date.available | 2024-12-02T23:00:48Z | - |
| dc.date.issued | 2021-04 | - |
| dc.identifier.issn | 2473-6988 | - |
| dc.identifier.issn | 2473-6988 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/72704 | - |
| dc.description.abstract | Recently, a generalization of convex function called exponentially (alpha, h - m)-convex function has been introduced. This generalization of convexity is used to obtain upper bounds of fractional integral operators involving Mittag-Leffler (ML) functions. Moreover, the upper bounds of left and right integrals lead to their boundedness and continuity. A modulus inequality is established for differentiable functions. The Hadamard type inequality is proved which shows upper and lower bounds of sum of left and right sided fractional integral operators. | - |
| dc.format.extent | 15 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | AMER INST MATHEMATICAL SCIENCES-AIMS | - |
| dc.title | On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.3934/math.2021379 | - |
| dc.identifier.scopusid | 2-s2.0-85104147355 | - |
| dc.identifier.wosid | 000672533000017 | - |
| dc.identifier.bibliographicCitation | AIMS MATHEMATICS, v.6, no.6, pp 6454 - 6468 | - |
| dc.citation.title | AIMS MATHEMATICS | - |
| dc.citation.volume | 6 | - |
| dc.citation.number | 6 | - |
| dc.citation.startPage | 6454 | - |
| dc.citation.endPage | 6468 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.subject.keywordPlus | INEQUALITIES | - |
| dc.subject.keywordPlus | EXTENSION | - |
| dc.subject.keywordPlus | (S | - |
| dc.subject.keywordAuthor | convex function | - |
| dc.subject.keywordAuthor | exponentially (alpha, h - m)-convex function | - |
| dc.subject.keywordAuthor | Mittag-Leffler function | - |
| dc.subject.keywordAuthor | generalized fractional integral operators | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
