Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Structure of weakly one-sided duo Ore extensions

Full metadata record
DC Field Value Language
dc.contributor.authorHong, Chan Yong-
dc.contributor.authorKim, Hong Kee-
dc.contributor.authorKim, Nam Kyun-
dc.contributor.authorKwak, Tai Keun-
dc.contributor.authorLee, Yang-
dc.date.accessioned2024-12-02T23:00:47Z-
dc.date.available2024-12-02T23:00:47Z-
dc.date.issued2021-02-
dc.identifier.issn0253-4142-
dc.identifier.issn0973-7685-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/72682-
dc.description.abstractMarks (J. Algebra280 (2004) 463-471) proved that if the skew polynomial ring R[x;sigma] is left or right duo, then R[x;sigma] is commutative. It is proved that if R[x;sigma] is weakly left (resp., right) duo over a reduced ring R with an endomorphism (resp., a monomorphism) sigma, then R[x;sigma] is commutative. This concludes that a noncommutative skew polynomial ring is not weakly left duo when the base ring is reduced. It is also shown that if R[x;sigma] is weakly left duo then the polynomial ring R[x] is weakly left duo. We next study the structure of the Ore extension R[x;sigma,delta] when it is weakly left or right duo.-
dc.language영어-
dc.language.isoENG-
dc.publisherSPRINGER INDIA-
dc.titleStructure of weakly one-sided duo Ore extensions-
dc.typeArticle-
dc.publisher.location인도-
dc.identifier.doi10.1007/s12044-020-00600-9-
dc.identifier.scopusid2-s2.0-85101033746-
dc.identifier.wosid000618323400003-
dc.identifier.bibliographicCitationPROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, v.131, no.1-
dc.citation.titlePROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES-
dc.citation.volume131-
dc.citation.number1-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordAuthorWeakly left (right) duo ring-
dc.subject.keywordAuthorskew polynomial ring-
dc.subject.keywordAuthorore extension-
dc.subject.keywordAuthorrigid endomorphism-
dc.subject.keywordAuthorcommutative ring-
dc.subject.keywordAuthorradical-
dc.subject.keywordAuthor16D25-
dc.subject.keywordAuthor16S36-
dc.subject.keywordAuthor16U80-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE