Detailed Information

Cited 33 time in webofscience Cited 35 time in scopus
Metadata Downloads

Explicit extragradient-like method with adaptive stepsizes for pseudomonotone variational inequalities

Full metadata record
DC Field Value Language
dc.contributor.authorThong, Duong Viet-
dc.contributor.authorYang, Jun-
dc.contributor.authorCho, Yeol Je-
dc.contributor.authorRassias, Themistocles M.-
dc.date.accessioned2024-12-02T23:00:47Z-
dc.date.available2024-12-02T23:00:47Z-
dc.date.issued2021-09-
dc.identifier.issn1862-4472-
dc.identifier.issn1862-4480-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/72680-
dc.description.abstractThe purpose of this paper is to introduce a new modified subgradient extragradient method for finding an element in the set of solutions of the variational inequality problem for a pseudomonotone and Lipschitz continuous mapping in real Hilbert spaces. It is well known that for the existing subgradient extragradient methods, the step size requires the line-search process or the knowledge of the Lipschitz constant of the mapping, which restrict the applications of the method. To overcome this barrier, in this work we present a modified subgradient extragradient method with adaptive stepsizes and do not require extra projection or value of the mapping. The advantages of the proposed method only use one projection to compute and the strong convergence proved without the prior knowledge of the Lipschitz constant of the inequality variational mapping. Numerical experiments illustrate the performances of our new algorithm and provide a comparison with related algorithms.-
dc.format.extent19-
dc.language영어-
dc.language.isoENG-
dc.publisherSPRINGER HEIDELBERG-
dc.titleExplicit extragradient-like method with adaptive stepsizes for pseudomonotone variational inequalities-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1007/s11590-020-01678-w-
dc.identifier.scopusid2-s2.0-85098694254-
dc.identifier.wosid000604183100002-
dc.identifier.bibliographicCitationOPTIMIZATION LETTERS, v.15, no.6, pp 2181 - 2199-
dc.citation.titleOPTIMIZATION LETTERS-
dc.citation.volume15-
dc.citation.number6-
dc.citation.startPage2181-
dc.citation.endPage2199-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaOperations Research & Management Science-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryOperations Research & Management Science-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusSTRONG-CONVERGENCE-
dc.subject.keywordPlusPROJECTION METHOD-
dc.subject.keywordPlusCONTRACTION METHODS-
dc.subject.keywordPlusWEAK-
dc.subject.keywordPlusALGORITHMS-
dc.subject.keywordPlusSTEP-
dc.subject.keywordAuthorSubgradient extragradient method-
dc.subject.keywordAuthorMann type method-
dc.subject.keywordAuthorVariational inequality problem-
dc.subject.keywordAuthorPseudomonotone mapping-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Yeol Je photo

Cho, Yeol Je
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE