Cited 0 time in
Multi-step inertial Krasnosel'skii-Mann iteration with new inertial parameters arrays
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Dong, Qiao-Li | - |
| dc.contributor.author | Li, Xiao-Huan | - |
| dc.contributor.author | Cho, Yeol Je | - |
| dc.contributor.author | Rassias, Themistocles M. | - |
| dc.date.accessioned | 2024-12-02T23:00:46Z | - |
| dc.date.available | 2024-12-02T23:00:46Z | - |
| dc.date.issued | 2021-08 | - |
| dc.identifier.issn | 1661-7738 | - |
| dc.identifier.issn | 1661-7746 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/72678 | - |
| dc.description.abstract | Recently, the authors (Dong et al. in J Global Optim 73(4):801-824, 2019) introduced the multi-step inertial Krasnosel'skii-Mann iteration, where the inertial parameters involve the iterative sequence. Therefore, one has to compute the inertial parameters per iteration. The aim of this article is to present two kinds of inertial parameter arrays which do not depend on the iterative sequence. We first introduce a general Krasnosel'skii-Mann iteration on the affine hull of orbits, based on which one inertial parameter array is presented. Second, we investigate the other inertial parameter array by introducing a modified Krasnosel'skii-Mann iteration. The convergence of the modified Krasnosel'skii-Mann iteration is shown using an exhaustive convergence analysis and the running-average iteration-complexity bound is provided. Finally, we give two numerical examples to illustrate that the multi-step inertial Krasnosel'skii-Mann iteration with inertial parameters proposed in this article behaves better than that with inertial parameters given in [10]. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | SPRINGER BASEL AG | - |
| dc.title | Multi-step inertial Krasnosel'skii-Mann iteration with new inertial parameters arrays | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.1007/s11784-021-00879-9 | - |
| dc.identifier.scopusid | 2-s2.0-85116058717 | - |
| dc.identifier.wosid | 000677702100001 | - |
| dc.identifier.bibliographicCitation | JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, v.23, no.3 | - |
| dc.citation.title | JOURNAL OF FIXED POINT THEORY AND APPLICATIONS | - |
| dc.citation.volume | 23 | - |
| dc.citation.number | 3 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.subject.keywordPlus | CONVERGENCE THEOREMS | - |
| dc.subject.keywordPlus | ALGORITHM | - |
| dc.subject.keywordPlus | SCHEME | - |
| dc.subject.keywordAuthor | Fixed point problem | - |
| dc.subject.keywordAuthor | Krasnosel'skii-Mann iteration | - |
| dc.subject.keywordAuthor | multi-step inertial Krasnosel'skii-Mann iteration | - |
| dc.subject.keywordAuthor | nonexpansive mapping | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
