The $(m, n)$-fuzzy set and its application in $BCK$-algebrasThe $(m, n)$-fuzzy set and its application in $BCK$-algebras
- Other Titles
- The $(m, n)$-fuzzy set and its application in $BCK$-algebras
- Authors
- Young Bae Jun; 허걸
- Issue Date
- Feb-2022
- Publisher
- (주) 경문사
- Keywords
- $(m; n)$-fuzzy set; $(m; n)$-fuzzy subalgebra; $(m; n)$-cutty set
- Citation
- ANNALS OF FUZZY MATHEMATICS AND INFORMATICS, v.24, no.1, pp 17 - 29
- Pages
- 13
- Indexed
- KCI
- Journal Title
- ANNALS OF FUZZY MATHEMATICS AND INFORMATICS
- Volume
- 24
- Number
- 1
- Start Page
- 17
- End Page
- 29
- URI
- https://scholarworks.gnu.ac.kr/handle/sw.gnu/72561
- DOI
- 10.30948/afmi.2022.24.1.17
- ISSN
- 2093-9310
2287-6235
- Abstract
- The concept of the $(m,n)$-fuzzy set is introduced and compared with other types of fuzzy sets. Some operations for the $(m,n)$-fuzzy set are introduced, and their properties are investigated. We define $(m,n)$-fuzzy subalgebras in $BCK$-algebras and $BCI$-algebras and study their properties. A given $(m,n)$-fuzzy subalgebra is used to create a new $(m,n)$-fuzzy subalgebra. The intersection of two $(m,n)$-fuzzy subalgebras to be a $(m,n)$-fuzzy subalgebra is proved, and an example is given to show that the union of two $(m,n)$-fuzzy subalgebras may not be a $(m,n)$-fuzzy subalgebra. The $(m,n)$-cutty set is used to obtain the characterization of $(m,n)$-fuzzy subalgebra. The homomorphic image and preimage of $(m,n)$-fuzzy subalgebra is discussed. It turns out that intuitionistic fuzzy subalgebra is a subclass of $(m,n)$-fuzzy subalgebra.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - 사범대학 > 수학교육과 > Journal Articles

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.