Detailed Information

Cited 27 time in webofscience Cited 39 time in scopus
Metadata Downloads

A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges

Full metadata record
DC Field Value Language
dc.contributor.authorDanishuddin-
dc.contributor.authorKumar, Vikas-
dc.contributor.authorFaheem, Mohammad-
dc.contributor.authorLee, Keun Woo-
dc.date.accessioned2024-12-02T22:30:59Z-
dc.date.available2024-12-02T22:30:59Z-
dc.date.issued2022-02-
dc.identifier.issn1359-6446-
dc.identifier.issn1878-5832-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/72535-
dc.description.abstractTraditionally, in vitro and in vivo methods are useful for estimating human pharmacokinetics (PK) parameters; however, it is impractical to perform these complex and expensive experiments on a large number of compounds. The integration of publicly available chemical, or medical Big Data and artificial intelligence (AI)-based approaches led to qualitative and quantitative prediction of human PK of a candidate drug. However, predicting drug response with these approaches is challenging, partially because of the adaptation of algorithmic and limitations related to experimental data. In this report, we provide an overview of machine learning (ML)-based quantitative structure-activity relationship (QSAR) models used in the assessment or prediction of PK values as well as databases available for obtaining such data.-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleA decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.drudis.2021.09.013-
dc.identifier.scopusid2-s2.0-85116880859-
dc.identifier.wosid000750040900014-
dc.identifier.bibliographicCitationDrug Discovery Today, v.27, no.2, pp 529 - 537-
dc.citation.titleDrug Discovery Today-
dc.citation.volume27-
dc.citation.number2-
dc.citation.startPage529-
dc.citation.endPage537-
dc.type.docTypeReview-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPharmacology & Pharmacy-
dc.relation.journalWebOfScienceCategoryPharmacology & Pharmacy-
dc.subject.keywordPlusPLASMA-PROTEIN BINDING-
dc.subject.keywordPlusQUANTITATIVE STRUCTURE-ACTIVITY-
dc.subject.keywordPlusIN-SILICO METHODS-
dc.subject.keywordPlusDRUG DISCOVERY-
dc.subject.keywordPlusVOLUME-
dc.subject.keywordPlusVIVO-
dc.subject.keywordPlusQSAR-
dc.subject.keywordPlusCLEARANCE-
dc.subject.keywordPlusASSUMPTION-
dc.subject.keywordPlusACCURACY-
dc.subject.keywordAuthorPharmacokinetics-
dc.subject.keywordAuthorQSAR-
dc.subject.keywordAuthorChemical Big Data-
dc.subject.keywordAuthorDrug development-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE