A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Danishuddin | - |
dc.contributor.author | Kumar, Vikas | - |
dc.contributor.author | Faheem, Mohammad | - |
dc.contributor.author | Lee, Keun Woo | - |
dc.date.accessioned | 2024-12-02T22:30:59Z | - |
dc.date.available | 2024-12-02T22:30:59Z | - |
dc.date.issued | 2022-02 | - |
dc.identifier.issn | 1359-6446 | - |
dc.identifier.issn | 1878-5832 | - |
dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/72535 | - |
dc.description.abstract | Traditionally, in vitro and in vivo methods are useful for estimating human pharmacokinetics (PK) parameters; however, it is impractical to perform these complex and expensive experiments on a large number of compounds. The integration of publicly available chemical, or medical Big Data and artificial intelligence (AI)-based approaches led to qualitative and quantitative prediction of human PK of a candidate drug. However, predicting drug response with these approaches is challenging, partially because of the adaptation of algorithmic and limitations related to experimental data. In this report, we provide an overview of machine learning (ML)-based quantitative structure-activity relationship (QSAR) models used in the assessment or prediction of PK values as well as databases available for obtaining such data. | - |
dc.format.extent | 9 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Elsevier BV | - |
dc.title | A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1016/j.drudis.2021.09.013 | - |
dc.identifier.scopusid | 2-s2.0-85116880859 | - |
dc.identifier.wosid | 000750040900014 | - |
dc.identifier.bibliographicCitation | Drug Discovery Today, v.27, no.2, pp 529 - 537 | - |
dc.citation.title | Drug Discovery Today | - |
dc.citation.volume | 27 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 529 | - |
dc.citation.endPage | 537 | - |
dc.type.docType | Review | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Pharmacology & Pharmacy | - |
dc.relation.journalWebOfScienceCategory | Pharmacology & Pharmacy | - |
dc.subject.keywordPlus | PLASMA-PROTEIN BINDING | - |
dc.subject.keywordPlus | QUANTITATIVE STRUCTURE-ACTIVITY | - |
dc.subject.keywordPlus | IN-SILICO METHODS | - |
dc.subject.keywordPlus | DRUG DISCOVERY | - |
dc.subject.keywordPlus | VOLUME | - |
dc.subject.keywordPlus | VIVO | - |
dc.subject.keywordPlus | QSAR | - |
dc.subject.keywordPlus | CLEARANCE | - |
dc.subject.keywordPlus | ASSUMPTION | - |
dc.subject.keywordPlus | ACCURACY | - |
dc.subject.keywordAuthor | Pharmacokinetics | - |
dc.subject.keywordAuthor | QSAR | - |
dc.subject.keywordAuthor | Chemical Big Data | - |
dc.subject.keywordAuthor | Drug development | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0533
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.