Cited 7 time in
Proximal point algorithms based on<i>S</i>-iterative technique for nearly asymptotically quasi-nonexpansive mappings and applications
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Sahu, D. R. | - |
| dc.contributor.author | Kumar, Ajeet | - |
| dc.contributor.author | Kang, Shin Min | - |
| dc.date.accessioned | 2024-12-02T22:30:41Z | - |
| dc.date.available | 2024-12-02T22:30:41Z | - |
| dc.date.issued | 2021-04 | - |
| dc.identifier.issn | 1017-1398 | - |
| dc.identifier.issn | 1572-9265 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/72420 | - |
| dc.description.abstract | In this paper, we combine theS-iteration process introduced by Agarwal et al. (J. Nonlinear Convex Anal.,8(1), 61-792007) with the proximal point algorithm introduced by Rockafellar (SIAM J. Control Optim.,14, 877-8981976) to propose a new modified proximal point algorithm based on theS-type iteration process for approximating a common element of the set of solutions of convex minimization problems and the set of fixed points of nearly asymptotically quasi-nonexpansive mappings in the framework of CAT(0) spaces and prove the o-convergence of the proposed algorithm for solving common minimization problem and common fixed point problem. Our result generalizes, extends and unifies the corresponding results of Dhompongsa and Panyanak (Comput. Math. Appl.,56, 2572-25792008), Khan and Abbas (Comput. Math. Appl.,61, 109-1162011), Abbas et al. (Math. Comput. Modelling,55, 1418-14272012) and many more. | - |
| dc.format.extent | 30 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | SPRINGER | - |
| dc.title | Proximal point algorithms based on<i>S</i>-iterative technique for nearly asymptotically quasi-nonexpansive mappings and applications | - |
| dc.type | Article | - |
| dc.publisher.location | 네델란드 | - |
| dc.identifier.doi | 10.1007/s11075-020-00945-2 | - |
| dc.identifier.scopusid | 2-s2.0-85086391578 | - |
| dc.identifier.wosid | 000551449900003 | - |
| dc.identifier.bibliographicCitation | NUMERICAL ALGORITHMS, v.86, no.4, pp 1561 - 1590 | - |
| dc.citation.title | NUMERICAL ALGORITHMS | - |
| dc.citation.volume | 86 | - |
| dc.citation.number | 4 | - |
| dc.citation.startPage | 1561 | - |
| dc.citation.endPage | 1590 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.subject.keywordPlus | DELTA-CONVERGENCE THEOREMS | - |
| dc.subject.keywordPlus | MODIFIED S-ITERATION | - |
| dc.subject.keywordPlus | FIXED-POINTS | - |
| dc.subject.keywordPlus | VARIATIONAL-INEQUALITIES | - |
| dc.subject.keywordPlus | SPACES | - |
| dc.subject.keywordAuthor | Convex minimization problem | - |
| dc.subject.keywordAuthor | Fixed point problem | - |
| dc.subject.keywordAuthor | Nearly asymptotically quasi-nonexpansive mapping | - |
| dc.subject.keywordAuthor | Mean nonexpansive mapping | - |
| dc.subject.keywordAuthor | S-iteration process | - |
| dc.subject.keywordAuthor | Proximal point algorithm | - |
| dc.subject.keywordAuthor | CAT(0) space | - |
| dc.subject.keywordAuthor | o-convergence | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
