Detailed Information

Cited 2 time in webofscience Cited 1 time in scopus
Metadata Downloads

Memory access minimization for mean-shift tracking in mobile devices

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Kwontaeg-
dc.contributor.authorOh, Beom-Seok-
dc.contributor.authorYu, Sunjin-
dc.date.accessioned2024-12-02T22:30:41Z-
dc.date.available2024-12-02T22:30:41Z-
dc.date.issued2021-11-
dc.identifier.issn1380-7501-
dc.identifier.issn1573-7721-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/72419-
dc.description.abstractDue to the development of artificial intelligence and computer vision technology, many autonomous drones have been studied. However, computer vision technology requires high performance CPU due to its high complexity, and battery consumption is so high that drones are constrained to fly for a long time. Therefore, low-power mobile devices require tracking algorithms that minimize battery consumption. In this paper, we propose a mean-shift based tracking algorithm that minimizes memory access to reduce battery consumption. To accomplish this, we minimize the number of memory accesses by using an algorithm that divides the direction of the mean-shift vector into eight, and calculates the sum of the density maps only for the new area without calculating the sum of the density maps for the already calculated area. It is possible to increase the calculation efficiency by lowering the memory access cost. Experimental results show that the proposed method is more efficient than the existing method.-
dc.format.extent15-
dc.language영어-
dc.language.isoENG-
dc.publisherSPRINGER-
dc.titleMemory access minimization for mean-shift tracking in mobile devices-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1007/s11042-020-09364-w-
dc.identifier.scopusid2-s2.0-85088828559-
dc.identifier.wosid000559382300003-
dc.identifier.bibliographicCitationMULTIMEDIA TOOLS AND APPLICATIONS, v.80, no.26-27, pp 34173 - 34187-
dc.citation.titleMULTIMEDIA TOOLS AND APPLICATIONS-
dc.citation.volume80-
dc.citation.number26-27-
dc.citation.startPage34173-
dc.citation.endPage34187-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Software Engineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusTARGET TRACKING-
dc.subject.keywordPlusOBJECT TRACKING-
dc.subject.keywordPlusVISION-
dc.subject.keywordAuthorObject tracking-
dc.subject.keywordAuthorMobile device-
dc.subject.keywordAuthorMean shift-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE