Cited 22 time in
An inertial Popov's method for solving pseudomonotone variational inequalities
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Duong Viet Thong | - |
| dc.contributor.author | Li, Xiao-Huan | - |
| dc.contributor.author | Dong, Qiao-Li | - |
| dc.contributor.author | Cho, Yeol Je | - |
| dc.contributor.author | Rassias, Themistocles M. | - |
| dc.date.accessioned | 2024-12-02T22:30:41Z | - |
| dc.date.available | 2024-12-02T22:30:41Z | - |
| dc.date.issued | 2021-03 | - |
| dc.identifier.issn | 1862-4472 | - |
| dc.identifier.issn | 1862-4480 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/72415 | - |
| dc.description.abstract | In this work, we propose a new modified Popov's method by using inertial effect for solving the variational inequality problem in real Hilbert spaces. The advantage of the proposed algorithm is the computation of only one value of the inequality mapping and one projection onto the admissible set per one iteration as well as it does not need to the prior knowledge of the Lipschitz constants of the variational inequality mapping. We present weak convergence theorem of the proposed algorithm under pseudomonotonicity and Lipschitz continuity of the associated mapping. Our results generalize and extend some related results in the literature and primary numerical experiments demonstrate the applicability of the scheme. | - |
| dc.format.extent | 21 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | SPRINGER HEIDELBERG | - |
| dc.title | An inertial Popov's method for solving pseudomonotone variational inequalities | - |
| dc.type | Article | - |
| dc.publisher.location | 독일 | - |
| dc.identifier.doi | 10.1007/s11590-020-01599-8 | - |
| dc.identifier.scopusid | 2-s2.0-85085002936 | - |
| dc.identifier.wosid | 000534193200001 | - |
| dc.identifier.bibliographicCitation | OPTIMIZATION LETTERS, v.15, no.2, pp 757 - 777 | - |
| dc.citation.title | OPTIMIZATION LETTERS | - |
| dc.citation.volume | 15 | - |
| dc.citation.number | 2 | - |
| dc.citation.startPage | 757 | - |
| dc.citation.endPage | 777 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Operations Research & Management Science | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Operations Research & Management Science | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.subject.keywordPlus | SUBGRADIENT EXTRAGRADIENT METHODS | - |
| dc.subject.keywordPlus | STRONG-CONVERGENCE | - |
| dc.subject.keywordPlus | CONTRACTION METHODS | - |
| dc.subject.keywordPlus | MONOTONE-OPERATORS | - |
| dc.subject.keywordPlus | PROXIMAL METHOD | - |
| dc.subject.keywordPlus | PROJECTION | - |
| dc.subject.keywordPlus | POINTS | - |
| dc.subject.keywordAuthor | Popov's method | - |
| dc.subject.keywordAuthor | Variational inequality problem | - |
| dc.subject.keywordAuthor | Pseudo-monotone mapping | - |
| dc.subject.keywordAuthor | Weak convergence | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
