Detailed Information

Cited 16 time in webofscience Cited 17 time in scopus
Metadata Downloads

A new strong convergence for solving split variational inclusion problems

Full metadata record
DC Field Value Language
dc.contributor.authorThong, Duong Viet-
dc.contributor.authorDung, Vu Tien-
dc.contributor.authorCho, Yeol Je-
dc.date.accessioned2024-12-02T22:30:40Z-
dc.date.available2024-12-02T22:30:40Z-
dc.date.issued2021-02-
dc.identifier.issn1017-1398-
dc.identifier.issn1572-9265-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/72396-
dc.description.abstractThe purpose of this article is to propose an algorithm for finding an approximate solution of a split variational inclusion problem for monotone operators. By using inertial method, we get a new and simple algorithm for such a problem. Under standard assumptions, we study the strong convergence theorem of the proposed algorithm. As application, we study the split feasibility problem in real Hilbert spaces. Finally, for supporting the convergence of the proposed algorithm, we also consider several preliminary numerical experiments for solving signal recovery by compressed sensing.-
dc.format.extent27-
dc.language영어-
dc.language.isoENG-
dc.publisherSPRINGER-
dc.titleA new strong convergence for solving split variational inclusion problems-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1007/s11075-020-00901-0-
dc.identifier.scopusid2-s2.0-85082940284-
dc.identifier.wosid000522597100001-
dc.identifier.bibliographicCitationNUMERICAL ALGORITHMS, v.86, no.2, pp 565 - 591-
dc.citation.titleNUMERICAL ALGORITHMS-
dc.citation.volume86-
dc.citation.number2-
dc.citation.startPage565-
dc.citation.endPage591-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusINERTIAL PROXIMAL ALGORITHM-
dc.subject.keywordPlusMAXIMAL MONOTONE-OPERATORS-
dc.subject.keywordPlusNULL POINT PROBLEM-
dc.subject.keywordPlusCONTRACTION METHODS-
dc.subject.keywordPlusGRADIENT-METHOD-
dc.subject.keywordPlusHILBERT-SPACES-
dc.subject.keywordPlusPROJECTION-
dc.subject.keywordPlusFEASIBILITY-
dc.subject.keywordPlusMINIMIZATION-
dc.subject.keywordPlusSETS-
dc.subject.keywordAuthorInertial method-
dc.subject.keywordAuthorContraction method-
dc.subject.keywordAuthorSplit feasibility problem-
dc.subject.keywordAuthorSignal recovery-
dc.subject.keywordAuthor47 J20-
dc.subject.keywordAuthor47 J25-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Yeol Je photo

Cho, Yeol Je
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE