Cited 73 time in
Analysis of damage-tolerance of TRIP-assisted V10Cr10Fe45Co30Ni5 high-entropy alloy at room and cryogenic temperatures
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Jo, Yong Hee | - |
| dc.contributor.author | Yang, Junha | - |
| dc.contributor.author | Doh, Kyung-Yeon | - |
| dc.contributor.author | An, Woojin | - |
| dc.contributor.author | Kim, Dae Woong | - |
| dc.contributor.author | Sung, Hyokyung | - |
| dc.contributor.author | Lee, Donghwa | - |
| dc.contributor.author | Kim, Hyoung Seop | - |
| dc.contributor.author | Sohn, Seok Su | - |
| dc.contributor.author | Lee, Sunghak | - |
| dc.date.accessioned | 2024-12-02T22:00:51Z | - |
| dc.date.available | 2024-12-02T22:00:51Z | - |
| dc.date.issued | 2020-12 | - |
| dc.identifier.issn | 0925-8388 | - |
| dc.identifier.issn | 1873-4669 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/72253 | - |
| dc.description.abstract | A single-phase face-centered-cubic (FCC) high- or medium-entropy alloys (HEAs or MEAs) have attracted great attentions due to their novel damage-tolerance properties (strength, ductility, and fracture toughness) by generating nano-twins at cryogenic temperature. The fracture toughness assessment is essential for evaluating the reliability of high-performance materials for cryogenic applications; however, fracture studies on single-phase FCC HEAs showing transformation-induced plasticity (TRIP) have been hardly conducted. In this study, thus, damage-tolerance mechanisms of a V10Cr10Fe45Co30Ni5 HEA showing the FCC to body-centered-cubic (BCC) TRIP were investigated at room and cryogenic temperatures. At room temperature (298 K), the alloy shows the tensile strength of 731 MPa, elongation of 40%, and fracture toughness (K-JIc) of 230 MPa m(1/2). At cryogenic temperature (77 K), the strength and elongation improve to 1.2 GPa and 66%, respectively, while the K-JIc remains almost constant at 237 MPa m(1/2). Dislocation-mediated plasticity prevails at 298 K; however, the TRIP from FCC to BCC occurs at 77 K. Deformation and fracture mechanisms are analyzed by stacking fault energies and differences in Gibbs free energies between phases calculated by ab-initio methods, and are compared to those of CrMnFeCoNi, CrCoNi, Fe50Mn30Co10Cr10, and V10Cr10Fe45Co20Ni15 alloys. Despite the presence of a considerable amount of BCC which is intrinsically brittle at low temperature, the transformed BCC martensite shows ductile fracture after the fracture toughness test even in cryogenic environments. These results demonstrate that the FCC to BCC TRIP can be an attractive route in a field of HEA design to overcome the strength and toughness trade-off at cryogenic temperature. (C) 2020 Elsevier B.V. All rights reserved. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Elsevier BV | - |
| dc.title | Analysis of damage-tolerance of TRIP-assisted V10Cr10Fe45Co30Ni5 high-entropy alloy at room and cryogenic temperatures | - |
| dc.title.alternative | Analysis of damage-tolerance of TRIP-assisted V<sub>10</sub>Cr<sub>10</sub>Fe<sub>45</sub>Co<sub>30</sub>Ni<sub>5</sub > high-entropy alloy at room and cryogenic temperatures | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.1016/j.jallcom.2020.156090 | - |
| dc.identifier.scopusid | 2-s2.0-85087122495 | - |
| dc.identifier.wosid | 000560697500013 | - |
| dc.identifier.bibliographicCitation | Journal of Alloys and Compounds, v.844 | - |
| dc.citation.title | Journal of Alloys and Compounds | - |
| dc.citation.volume | 844 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Chemistry | - |
| dc.relation.journalResearchArea | Materials Science | - |
| dc.relation.journalResearchArea | Metallurgy & Metallurgical Engineering | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
| dc.relation.journalWebOfScienceCategory | Metallurgy & Metallurgical Engineering | - |
| dc.subject.keywordPlus | DUCTILE-BRITTLE TRANSITION | - |
| dc.subject.keywordPlus | MECHANICAL-PROPERTIES | - |
| dc.subject.keywordPlus | FRACTURE-TOUGHNESS | - |
| dc.subject.keywordPlus | TWINNING BEHAVIOR | - |
| dc.subject.keywordPlus | IMPACT TOUGHNESS | - |
| dc.subject.keywordPlus | PHASE-STABILITY | - |
| dc.subject.keywordPlus | SINGLE-PHASE | - |
| dc.subject.keywordPlus | GRAIN-SIZE | - |
| dc.subject.keywordPlus | MICROSTRUCTURE | - |
| dc.subject.keywordPlus | TENSILE | - |
| dc.subject.keywordAuthor | High-entropy alloy (HEA) | - |
| dc.subject.keywordAuthor | Fracture toughness | - |
| dc.subject.keywordAuthor | Transformation-induced plasticity (TRIP) | - |
| dc.subject.keywordAuthor | Cryogenic temperature | - |
| dc.subject.keywordAuthor | Stacking fault energy | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
