Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Rings which satisfy the Property of Inserting Regular Elements at Zero Products

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Hong Kee-
dc.contributor.authorKwak, Tai Keun-
dc.contributor.authorLee, Yang-
dc.contributor.authorSeo, Yeonsook-
dc.date.accessioned2024-12-02T22:00:44Z-
dc.date.available2024-12-02T22:00:44Z-
dc.date.issued2020-06-
dc.identifier.issn1225-6951-
dc.identifier.issn0454-8124-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/72139-
dc.description.abstractThis article concerns the class of rings which satisfy the property of inserting regular elements at zero products, and rings with such property are called regular IFP. We study the structure of regular-IFP rings in relation to various ring properties that play roles in noncommutative ring theory. We investigate conditions under which the regular-IFPness pass to polynomial rings, and equivalent conditions to the regular-IFPness.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisher경북대학교 자연과학대학 수학과-
dc.titleRings which satisfy the Property of Inserting Regular Elements at Zero Products-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.5666/KMJ.2020.60.2.307-
dc.identifier.scopusid2-s2.0-85088868454-
dc.identifier.wosid000558410100007-
dc.identifier.bibliographicCitationKyungpook Mathematical Journal, v.60, no.2, pp 307 - 318-
dc.citation.titleKyungpook Mathematical Journal-
dc.citation.volume60-
dc.citation.number2-
dc.citation.startPage307-
dc.citation.endPage318-
dc.type.docTypeArticle-
dc.identifier.kciidART002599018-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClassesci-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordAuthorregular-IFP ring-
dc.subject.keywordAuthorregular element-
dc.subject.keywordAuthorIFP ring-
dc.subject.keywordAuthorpolynomial ring-
dc.subject.keywordAuthorgeneralized reduced ring-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE