Cited 40 time in
New strong convergence theorem of the inertial projection and contraction method for variational inequality problems
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Thong, Duong Viet | - |
| dc.contributor.author | Vinh, Nguyen The | - |
| dc.contributor.author | Cho, Yeol Je | - |
| dc.date.accessioned | 2024-12-02T22:00:43Z | - |
| dc.date.available | 2024-12-02T22:00:43Z | - |
| dc.date.issued | 2020-05 | - |
| dc.identifier.issn | 1017-1398 | - |
| dc.identifier.issn | 1572-9265 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/72124 | - |
| dc.description.abstract | In this paper, we introduce a new algorithm which combines the inertial projection and contraction method and the viscosity method for solving monotone variational inequality problems in real Hilbert spaces and prove a strong convergence theorem of our proposed algorithm under the standard assumptions imposed on cost operators. Finally, we give some numerical experiments to illustrate the proposed algorithm. | - |
| dc.format.extent | 21 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Baltzer Science Publishers B.V. | - |
| dc.title | New strong convergence theorem of the inertial projection and contraction method for variational inequality problems | - |
| dc.type | Article | - |
| dc.publisher.location | 네델란드 | - |
| dc.identifier.doi | 10.1007/s11075-019-00755-1 | - |
| dc.identifier.scopusid | 2-s2.0-85068229836 | - |
| dc.identifier.wosid | 000528979000012 | - |
| dc.identifier.bibliographicCitation | Numerical Algorithms, v.84, no.1, pp 285 - 305 | - |
| dc.citation.title | Numerical Algorithms | - |
| dc.citation.volume | 84 | - |
| dc.citation.number | 1 | - |
| dc.citation.startPage | 285 | - |
| dc.citation.endPage | 305 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.subject.keywordPlus | SUBGRADIENT EXTRAGRADIENT METHOD | - |
| dc.subject.keywordPlus | MAXIMAL MONOTONE-OPERATORS | - |
| dc.subject.keywordPlus | PROXIMAL POINT ALGORITHM | - |
| dc.subject.keywordPlus | HEMIVARIATIONAL INEQUALITIES | - |
| dc.subject.keywordPlus | ITERATIVE PROCESS | - |
| dc.subject.keywordPlus | GRADIENT METHODS | - |
| dc.subject.keywordPlus | WELL-POSEDNESS | - |
| dc.subject.keywordPlus | HYBRID METHOD | - |
| dc.subject.keywordPlus | FIXED-POINTS | - |
| dc.subject.keywordPlus | OPTIMIZATION | - |
| dc.subject.keywordAuthor | Inertial projection and contraction method | - |
| dc.subject.keywordAuthor | Viscosity method | - |
| dc.subject.keywordAuthor | Variational inequality problem | - |
| dc.subject.keywordAuthor | Monotone operator | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
