Detailed Information

Cited 39 time in webofscience Cited 40 time in scopus
Metadata Downloads

New strong convergence theorem of the inertial projection and contraction method for variational inequality problems

Full metadata record
DC Field Value Language
dc.contributor.authorThong, Duong Viet-
dc.contributor.authorVinh, Nguyen The-
dc.contributor.authorCho, Yeol Je-
dc.date.accessioned2024-12-02T22:00:43Z-
dc.date.available2024-12-02T22:00:43Z-
dc.date.issued2020-05-
dc.identifier.issn1017-1398-
dc.identifier.issn1572-9265-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/72124-
dc.description.abstractIn this paper, we introduce a new algorithm which combines the inertial projection and contraction method and the viscosity method for solving monotone variational inequality problems in real Hilbert spaces and prove a strong convergence theorem of our proposed algorithm under the standard assumptions imposed on cost operators. Finally, we give some numerical experiments to illustrate the proposed algorithm.-
dc.format.extent21-
dc.language영어-
dc.language.isoENG-
dc.publisherBaltzer Science Publishers B.V.-
dc.titleNew strong convergence theorem of the inertial projection and contraction method for variational inequality problems-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1007/s11075-019-00755-1-
dc.identifier.scopusid2-s2.0-85068229836-
dc.identifier.wosid000528979000012-
dc.identifier.bibliographicCitationNumerical Algorithms, v.84, no.1, pp 285 - 305-
dc.citation.titleNumerical Algorithms-
dc.citation.volume84-
dc.citation.number1-
dc.citation.startPage285-
dc.citation.endPage305-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusSUBGRADIENT EXTRAGRADIENT METHOD-
dc.subject.keywordPlusMAXIMAL MONOTONE-OPERATORS-
dc.subject.keywordPlusPROXIMAL POINT ALGORITHM-
dc.subject.keywordPlusHEMIVARIATIONAL INEQUALITIES-
dc.subject.keywordPlusITERATIVE PROCESS-
dc.subject.keywordPlusGRADIENT METHODS-
dc.subject.keywordPlusWELL-POSEDNESS-
dc.subject.keywordPlusHYBRID METHOD-
dc.subject.keywordPlusFIXED-POINTS-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordAuthorInertial projection and contraction method-
dc.subject.keywordAuthorViscosity method-
dc.subject.keywordAuthorVariational inequality problem-
dc.subject.keywordAuthorMonotone operator-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Yeol Je photo

Cho, Yeol Je
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE