Cited 20 time in
A projection and contraction method with adaptive step sizes for solving bilevel pseudo-monotone variational inequality problems
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Duong Viet Thong | - |
| dc.contributor.author | Li, Xiao-Huan | - |
| dc.contributor.author | Dong, Qiao-Li | - |
| dc.contributor.author | Cho, Yeol Je | - |
| dc.contributor.author | Rassias, Themistocles M. | - |
| dc.date.accessioned | 2024-12-02T22:00:42Z | - |
| dc.date.available | 2024-12-02T22:00:42Z | - |
| dc.date.issued | 2022-07 | - |
| dc.identifier.issn | 0233-1934 | - |
| dc.identifier.issn | 1029-4945 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/72112 | - |
| dc.description.abstract | In this paper, we propose a single projection method for finding a solution of the bilevel pseudo-monotone variational inequality problem in real Hilbert spaces. The advantage of the proposed algorithm requires only one projection onto the feasible set. Also, we prove strong convergence theorems of the proposed method under mild conditions, which improve some related results in the literature. Finally, we present some numerical experiments to show the efficiency and advantages of the proposed algorithm. | - |
| dc.format.extent | 24 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Taylor & Francis | - |
| dc.title | A projection and contraction method with adaptive step sizes for solving bilevel pseudo-monotone variational inequality problems | - |
| dc.type | Article | - |
| dc.publisher.location | 영국 | - |
| dc.identifier.doi | 10.1080/02331934.2020.1849206 | - |
| dc.identifier.scopusid | 2-s2.0-85097192090 | - |
| dc.identifier.wosid | 000596163500001 | - |
| dc.identifier.bibliographicCitation | Optimization, v.71, no.7, pp 2073 - 2096 | - |
| dc.citation.title | Optimization | - |
| dc.citation.volume | 71 | - |
| dc.citation.number | 7 | - |
| dc.citation.startPage | 2073 | - |
| dc.citation.endPage | 2096 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Operations Research & Management Science | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Operations Research & Management Science | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.subject.keywordPlus | SUBGRADIENT EXTRAGRADIENT METHOD | - |
| dc.subject.keywordPlus | STRONG-CONVERGENCE | - |
| dc.subject.keywordPlus | OPTIMIZATION | - |
| dc.subject.keywordAuthor | Contraction and projection method | - |
| dc.subject.keywordAuthor | bilevel variational inequality problem | - |
| dc.subject.keywordAuthor | pseudo-monotone mapping | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
