Detailed Information

Cited 48 time in webofscience Cited 58 time in scopus
Metadata Downloads

The extragradient algorithm with inertial effects extended to equilibrium problems

Full metadata record
DC Field Value Language
dc.contributor.authorRehman, Habib Ur-
dc.contributor.authorKumam, Poom-
dc.contributor.authorAbubakar, Auwal Bala-
dc.contributor.authorCho, Yeol Je-
dc.date.accessioned2024-12-02T22:00:39Z-
dc.date.available2024-12-02T22:00:39Z-
dc.date.issued2020-03-
dc.identifier.issn0101-8205-
dc.identifier.issn2238-3603-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/72075-
dc.description.abstractIn this paper, two algorithms are proposed for a class of pseudomonotone and strongly pseudomonotone equilibrium problems. These algorithms can be viewed as a extension of the paper title, the extragradient algorithm with inertial effects for solving the variational inequality proposed by Dong et al. (Optimization 65:2217-2226, 2016. 10.1080/02331934.2016.1239266). The weak convergence of the first algorithm is well established based on the standard assumption imposed on the cost bifunction. We provide a strong convergence for the second algorithm without knowing the strongly pseudomonoton and the Lipschitz-type constants of cost bifunction. The practical interpretation of a second algorithm is that the algorithm uses a sequence of step sizes that is converging to zero and non-summable. Numerical examples are used to assist the well-established convergence result, and we see that the suggested algorithm has a competitive advantage over time of execution and the number of iterations.-
dc.language영어-
dc.language.isoENG-
dc.publisherBirkhaeuser-
dc.titleThe extragradient algorithm with inertial effects extended to equilibrium problems-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1007/s40314-020-1093-0-
dc.identifier.scopusid2-s2.0-85081279867-
dc.identifier.wosid000519242000003-
dc.identifier.bibliographicCitationComputational and Applied Mathematics, v.39, no.2-
dc.citation.titleComputational and Applied Mathematics-
dc.citation.volume39-
dc.citation.number2-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusAUXILIARY PROBLEM PRINCIPLE-
dc.subject.keywordPlusMONOTONE-OPERATORS-
dc.subject.keywordPlusSTRONG-CONVERGENCE-
dc.subject.keywordPlusPROXIMAL METHOD-
dc.subject.keywordPlusWEAK-
dc.subject.keywordAuthorExtragradient method-
dc.subject.keywordAuthorInertial methods-
dc.subject.keywordAuthorEquilibrium problem-
dc.subject.keywordAuthorStrongly pseudomonotone bifunction-
dc.subject.keywordAuthorLipschitz-type condition-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Yeol Je photo

Cho, Yeol Je
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE