Detailed Information

Cited 6 time in webofscience Cited 6 time in scopus
Metadata Downloads

Vastly enhanced photoresponsivities of phase-controlled tin sulfide thin films

Full metadata record
DC Field Value Language
dc.contributor.authorKwon, Soon Hyeong-
dc.contributor.authorKim, Bong Ho-
dc.contributor.authorKim, Dong Wook-
dc.contributor.authorYoon, Hongji-
dc.contributor.authorYoon, Young Joon-
dc.date.accessioned2024-12-02T21:31:01Z-
dc.date.available2024-12-02T21:31:01Z-
dc.date.issued2020-09-
dc.identifier.issn0957-4484-
dc.identifier.issn1361-6528-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/71986-
dc.description.abstractHerein, we reveal extraordinary enhancements in the photoresponsivities of tin sulfide (SnxSy) grown on SiO2/Si wafers through post-phase transformations induced by electron beam irradiation (EBI) and crystallization. Amorphous Sn(x)S(y)thin films were formed by room-temperature sputtering, and as-deposited films were subsequently transformed into hexagonal SnS(2)and orthorhombic SnS phases by EBI at 600 and 800 V respectively, for only one minute. The use of a low-energy electron beam was sufficient to fabricate a Sn(x)S(y)photodetector, with no additional heating required. Less than 10 nm thick Sn(x)S(y)films with well-defined layer structures and stable surface morphologies were obtained through EBI at 600 and 800 V. The resulting phase-controlled SnS thin-film photodetector prepared using 800 V-EBI exhibited a 40 000-fold increase in photoresponsivity; when illuminated by a 450 nm light source, the active SnS-layer-containing photodetector demonstrated a photoresponsivity of 33.2 mA W-1.-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Physics Publishing-
dc.titleVastly enhanced photoresponsivities of phase-controlled tin sulfide thin films-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1088/1361-6528/ab991b-
dc.identifier.scopusid2-s2.0-85087531538-
dc.identifier.wosid000546773100001-
dc.identifier.bibliographicCitationNanotechnology, v.31, no.37-
dc.citation.titleNanotechnology-
dc.citation.volume31-
dc.citation.number37-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusSINGLE-CRYSTAL SNS2-
dc.subject.keywordPlusPRECURSOR CONCENTRATION-
dc.subject.keywordPlusWAFER-SCALE-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusFLAKES-
dc.subject.keywordPlusLAYERS-
dc.subject.keywordPlusSN2S3-
dc.subject.keywordAuthorelectron beam irradiation (EBI)-
dc.subject.keywordAuthorphase transformation-
dc.subject.keywordAuthorphotodetector-
dc.subject.keywordAuthortin sulfides (SnxSy)-
dc.subject.keywordAuthortransition metal dichalcogenide (TMD)-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE