Cited 2 time in
The Hyers–Ulam stability of an additive-quadratic s-functional inequality in Banach spaces
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Chaobankoh, Tanadon | - |
| dc.contributor.author | Suparatulatorn, Raweerote | - |
| dc.contributor.author | Park, Choonkil | - |
| dc.contributor.author | Cho, Yeol Je | - |
| dc.date.accessioned | 2024-12-02T21:30:58Z | - |
| dc.date.available | 2024-12-02T21:30:58Z | - |
| dc.date.issued | 2024-04 | - |
| dc.identifier.issn | 0035-5038 | - |
| dc.identifier.issn | 1827-3491 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/71962 | - |
| dc.description.abstract | For any fixed s is an element of {z is an element of C : z not equal 0 and vertical bar z vertical bar < 1}, we consider the following functional inequality: parallel to f(a + a', c + c') + f(a + a', c - c') + f(a - a', c + c') + f(a - a', c - c')-4f(a, c) - 4f(a, c')parallel to <= parallel to s(2f(a + a', c - c') +2f(a-a', c+c')-4f(a, c) - 4f(a, c') + 4f(a', c'))parallel to. (1) In this paper, we obtain the Hyers-Ulam stability of the proposed functional inequality using the direct and fixed point methods. | - |
| dc.format.extent | 16 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Istituto di Matematica dell Universita | - |
| dc.title | The Hyers–Ulam stability of an additive-quadratic s-functional inequality in Banach spaces | - |
| dc.title.alternative | The Hyers–Ulam stability of an additive-quadratic <i>s</i>-functional inequality in Banach spaces | - |
| dc.type | Article | - |
| dc.publisher.location | 이탈리아 | - |
| dc.identifier.doi | 10.1007/s11587-021-00648-3 | - |
| dc.identifier.scopusid | 2-s2.0-85116270383 | - |
| dc.identifier.wosid | 000702812400001 | - |
| dc.identifier.bibliographicCitation | Ricerche di Matematica, v.73, no.2, pp 1029 - 1044 | - |
| dc.citation.title | Ricerche di Matematica | - |
| dc.citation.volume | 73 | - |
| dc.citation.number | 2 | - |
| dc.citation.startPage | 1029 | - |
| dc.citation.endPage | 1044 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.subject.keywordPlus | EQUATION | - |
| dc.subject.keywordAuthor | Hyers-Ulam stability | - |
| dc.subject.keywordAuthor | Additive-quadratic functional inequality | - |
| dc.subject.keywordAuthor | Fixed point method | - |
| dc.subject.keywordAuthor | Direct method | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
