Cited 0 time in
딥러닝을 이용한 회전된 정사각형 단면을 가진 장애물 주위의 과도유동 해석
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | 이태환 | - |
| dc.contributor.author | 박진현 | - |
| dc.date.accessioned | 2022-12-26T13:17:03Z | - |
| dc.date.available | 2022-12-26T13:17:03Z | - |
| dc.date.issued | 2020 | - |
| dc.identifier.issn | 1229-604X | - |
| dc.identifier.issn | 2508-3805 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/7193 | - |
| dc.description.abstract | The numerical analysis of two-dimensional transient flow around the obstacle with rotated square cross sections was carried out. The obtained velocity distributions for each time step and each rotation angle were imaged to provide data for CNN(convolutional neural network). Both classification and regression neural networks were used for prediction of rotation angle. As results The classification method incorrectly predicted the rotation angle in only 2 of the 470 images. The regression method predicted the rotation angle errors within except 2 out of 470 images. From these facts, it could be concluded that both methods can be sufficiently applicable to the flow analysis. | - |
| dc.format.extent | 7 | - |
| dc.language | 한국어 | - |
| dc.language.iso | KOR | - |
| dc.publisher | 한국기계기술학회 | - |
| dc.title | 딥러닝을 이용한 회전된 정사각형 단면을 가진 장애물 주위의 과도유동 해석 | - |
| dc.title.alternative | Analysis of Transient Flow Around the Obstacle with Rotated Square Cross Sections using Deep Learning | - |
| dc.type | Article | - |
| dc.publisher.location | 대한민국 | - |
| dc.identifier.doi | 10.17958/ksmt.22.4.202008.636 | - |
| dc.identifier.bibliographicCitation | 한국기계기술학회지, v.22, no.4, pp 636 - 642 | - |
| dc.citation.title | 한국기계기술학회지 | - |
| dc.citation.volume | 22 | - |
| dc.citation.number | 4 | - |
| dc.citation.startPage | 636 | - |
| dc.citation.endPage | 642 | - |
| dc.identifier.kciid | ART002615602 | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.subject.keywordAuthor | Transient flow | - |
| dc.subject.keywordAuthor | Convolutional neural network | - |
| dc.subject.keywordAuthor | Deep learning | - |
| dc.subject.keywordAuthor | Rotation angle | - |
| dc.subject.keywordAuthor | Velocity distribution | - |
| dc.subject.keywordAuthor | 과도유동 | - |
| dc.subject.keywordAuthor | 컨볼루션 신경망 | - |
| dc.subject.keywordAuthor | 딥러닝 | - |
| dc.subject.keywordAuthor | 회전각 | - |
| dc.subject.keywordAuthor | 속도분포 | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0534
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
