Cited 77 time in
A Novel Inertial Projection and Contraction Method for Solving Pseudomonotone Variational Inequality Problems
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Cholamjiak, Prasit | - |
| dc.contributor.author | Duong Viet Thong | - |
| dc.contributor.author | Cho, Yeol Je | - |
| dc.date.accessioned | 2024-12-02T21:30:53Z | - |
| dc.date.available | 2024-12-02T21:30:53Z | - |
| dc.date.issued | 2020-10 | - |
| dc.identifier.issn | 0167-8019 | - |
| dc.identifier.issn | 1572-9036 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/71900 | - |
| dc.description.abstract | In this paper, we introduce a new algorithm which combines the inertial contraction projection method and the Mann-type method (Mann in Proc. Am. Math. Soc. 4:506-510, 1953) for solving monotone variational inequality problems in real Hilbert spaces. The strong convergence of our proposed algorithm is proved under some standard assumptions imposed on cost operators. Finally, we give some numerical experiments to illustrate the proposed algorithm and the main result. | - |
| dc.format.extent | 29 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Kluwer Academic Publishers | - |
| dc.title | A Novel Inertial Projection and Contraction Method for Solving Pseudomonotone Variational Inequality Problems | - |
| dc.type | Article | - |
| dc.publisher.location | 네델란드 | - |
| dc.identifier.doi | 10.1007/s10440-019-00297-7 | - |
| dc.identifier.scopusid | 2-s2.0-85074859324 | - |
| dc.identifier.wosid | 000493978500002 | - |
| dc.identifier.bibliographicCitation | Acta Applicandae Mathematicae, v.169, no.1, pp 217 - 245 | - |
| dc.citation.title | Acta Applicandae Mathematicae | - |
| dc.citation.volume | 169 | - |
| dc.citation.number | 1 | - |
| dc.citation.startPage | 217 | - |
| dc.citation.endPage | 245 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.subject.keywordPlus | SUBGRADIENT EXTRAGRADIENT METHOD | - |
| dc.subject.keywordPlus | MAXIMAL MONOTONE-OPERATORS | - |
| dc.subject.keywordPlus | PROXIMAL POINT ALGORITHM | - |
| dc.subject.keywordPlus | STRONG-CONVERGENCE | - |
| dc.subject.keywordPlus | HEMIVARIATIONAL INEQUALITIES | - |
| dc.subject.keywordPlus | ITERATIVE METHODS | - |
| dc.subject.keywordPlus | WEAK-CONVERGENCE | - |
| dc.subject.keywordPlus | GRADIENT METHODS | - |
| dc.subject.keywordPlus | WELL-POSEDNESS | - |
| dc.subject.keywordPlus | HYBRID METHOD | - |
| dc.subject.keywordAuthor | Inertial contraction projection method | - |
| dc.subject.keywordAuthor | Mann-type method | - |
| dc.subject.keywordAuthor | Pseudomonotone mapping | - |
| dc.subject.keywordAuthor | Pseudomonotone variational inequality problem | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
