Detailed Information

Cited 13 time in webofscience Cited 13 time in scopus
Metadata Downloads

Modified accelerated algorithms for solving variational inequalities

Full metadata record
DC Field Value Language
dc.contributor.authorDang Van Hieu-
dc.contributor.authorCho, Yeol Je-
dc.contributor.authorXiao, Yi-bin-
dc.date.accessioned2024-12-02T21:30:52Z-
dc.date.available2024-12-02T21:30:52Z-
dc.date.issued2020-11-
dc.identifier.issn0020-7160-
dc.identifier.issn1029-0265-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/71896-
dc.description.abstractIn this paper, we propose two inertial algorithms with new stepsize rule for solving a monotone and Lipschitz variational inequality in a Hilbert space and prove some weak and strong convergence theorems of the proposed inertial algorithms. The algorithms use variable stepsizes which are updated at each iteration by a simple computation without any linesearch. A new stepsize rule presented in the paper has allowed the algorithms to work without the prior knowledge of Lipschitz constant of operator. Finally, we give several numerical results to demonstrate the computational performance of the new algorithms in comparison with other algorithms.-
dc.format.extent26-
dc.language영어-
dc.language.isoENG-
dc.publisherTaylor & Francis-
dc.titleModified accelerated algorithms for solving variational inequalities-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1080/00207160.2019.1686487-
dc.identifier.scopusid2-s2.0-85075047563-
dc.identifier.wosid000495838200001-
dc.identifier.bibliographicCitationInternational Journal of Computer Mathematics, v.97, no.11, pp 2233 - 2258-
dc.citation.titleInternational Journal of Computer Mathematics-
dc.citation.volume97-
dc.citation.number11-
dc.citation.startPage2233-
dc.citation.endPage2258-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusSUBGRADIENT EXTRAGRADIENT METHOD-
dc.subject.keywordPlusFINDING COMMON SOLUTIONS-
dc.subject.keywordPlusMONOTONE-OPERATORS-
dc.subject.keywordPlusSTRONG-CONVERGENCE-
dc.subject.keywordPlusPROJECTION-
dc.subject.keywordAuthorVariational inequality-
dc.subject.keywordAuthormonotone operator-
dc.subject.keywordAuthorextragradient method-
dc.subject.keywordAuthorsubgradient extragradient method-
dc.subject.keywordAuthorprojection method-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Yeol Je photo

Cho, Yeol Je
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE