Cited 13 time in
Modified accelerated algorithms for solving variational inequalities
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Dang Van Hieu | - |
| dc.contributor.author | Cho, Yeol Je | - |
| dc.contributor.author | Xiao, Yi-bin | - |
| dc.date.accessioned | 2024-12-02T21:30:52Z | - |
| dc.date.available | 2024-12-02T21:30:52Z | - |
| dc.date.issued | 2020-11 | - |
| dc.identifier.issn | 0020-7160 | - |
| dc.identifier.issn | 1029-0265 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/71896 | - |
| dc.description.abstract | In this paper, we propose two inertial algorithms with new stepsize rule for solving a monotone and Lipschitz variational inequality in a Hilbert space and prove some weak and strong convergence theorems of the proposed inertial algorithms. The algorithms use variable stepsizes which are updated at each iteration by a simple computation without any linesearch. A new stepsize rule presented in the paper has allowed the algorithms to work without the prior knowledge of Lipschitz constant of operator. Finally, we give several numerical results to demonstrate the computational performance of the new algorithms in comparison with other algorithms. | - |
| dc.format.extent | 26 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Taylor & Francis | - |
| dc.title | Modified accelerated algorithms for solving variational inequalities | - |
| dc.type | Article | - |
| dc.publisher.location | 영국 | - |
| dc.identifier.doi | 10.1080/00207160.2019.1686487 | - |
| dc.identifier.scopusid | 2-s2.0-85075047563 | - |
| dc.identifier.wosid | 000495838200001 | - |
| dc.identifier.bibliographicCitation | International Journal of Computer Mathematics, v.97, no.11, pp 2233 - 2258 | - |
| dc.citation.title | International Journal of Computer Mathematics | - |
| dc.citation.volume | 97 | - |
| dc.citation.number | 11 | - |
| dc.citation.startPage | 2233 | - |
| dc.citation.endPage | 2258 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.subject.keywordPlus | SUBGRADIENT EXTRAGRADIENT METHOD | - |
| dc.subject.keywordPlus | FINDING COMMON SOLUTIONS | - |
| dc.subject.keywordPlus | MONOTONE-OPERATORS | - |
| dc.subject.keywordPlus | STRONG-CONVERGENCE | - |
| dc.subject.keywordPlus | PROJECTION | - |
| dc.subject.keywordAuthor | Variational inequality | - |
| dc.subject.keywordAuthor | monotone operator | - |
| dc.subject.keywordAuthor | extragradient method | - |
| dc.subject.keywordAuthor | subgradient extragradient method | - |
| dc.subject.keywordAuthor | projection method | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
