Detailed Information

Cited 6 time in webofscience Cited 7 time in scopus
Metadata Downloads

A new self-adaptive algorithm for solving pseudomonotone variational inequality problems in Hilbert spaces

Full metadata record
DC Field Value Language
dc.contributor.authorDuong Viet, Thong-
dc.contributor.authorVan Long, Luong-
dc.contributor.authorLi, Xiao-Huan-
dc.contributor.authorDong, Qiao-Li-
dc.contributor.authorCho, Yeol Je-
dc.contributor.authorTuan, Pham Anh-
dc.date.accessioned2024-12-02T21:30:52Z-
dc.date.available2024-12-02T21:30:52Z-
dc.date.issued2022-12-
dc.identifier.issn0233-1934-
dc.identifier.issn1029-4945-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/71882-
dc.description.abstractIn this paper, we revisit the subgradient extragradient method for solving a pseudomonotone variational inequality problem with the Lipschitz condition in real Hilbert spaces. A new algorithm based on the subgradient extragradient method with the technique of choosing a new step size is proposed. The weak convergence of the proposed algorithm is established under the pseudomonotonicity and the Lipschitz continuity as well as without using the sequentially weakly continuity of the variational inequality mapping and the nonasymptotic O(1/n) convergence rate of the proposed algorithm is presented, while the strong convergence theorem of the proposed algorithm is also proved under the strong pseudomonotonicity and the Lipschitz continuity hypotheses. In order to show the computational effectiveness of our algorithm, some numerical results are provided.-
dc.format.extent25-
dc.language영어-
dc.language.isoENG-
dc.publisherTaylor & Francis-
dc.titleA new self-adaptive algorithm for solving pseudomonotone variational inequality problems in Hilbert spaces-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1080/02331934.2021.1909584-
dc.identifier.scopusid2-s2.0-85103654599-
dc.identifier.wosid000637249700001-
dc.identifier.bibliographicCitationOptimization, v.71, no.12, pp 3669 - 3693-
dc.citation.titleOptimization-
dc.citation.volume71-
dc.citation.number12-
dc.citation.startPage3669-
dc.citation.endPage3693-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaOperations Research & Management Science-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryOperations Research & Management Science-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusSUBGRADIENT EXTRAGRADIENT METHOD-
dc.subject.keywordPlusWEAK-CONVERGENCE-
dc.subject.keywordPlusMONOTONE-OPERATORS-
dc.subject.keywordPlusPROJECTION METHOD-
dc.subject.keywordAuthorSubgradient extragradient method-
dc.subject.keywordAuthorinertial method-
dc.subject.keywordAuthorvariational inequality problem-
dc.subject.keywordAuthorpseudomonotone mapping-
dc.subject.keywordAuthorLipschitz continuity-
dc.subject.keywordAuthorconvergence rate-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Yeol Je photo

Cho, Yeol Je
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE