Cited 5 time in
Drought-Induced Xylem Sulfate Activates the ABA-Mediated Regulation of Sulfate Assimilation and Glutathione Redox in <i>Brassica napus</i> Leaves
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lee, Bok-Rye | - |
| dc.contributor.author | Park, Sang-Hyun | - |
| dc.contributor.author | La, Van Hien | - |
| dc.contributor.author | Bae, Dong-Won | - |
| dc.contributor.author | Kim, Tae-Hwan | - |
| dc.date.accessioned | 2024-12-02T21:30:49Z | - |
| dc.date.available | 2024-12-02T21:30:49Z | - |
| dc.date.issued | 2022-12 | - |
| dc.identifier.issn | 2218-1989 | - |
| dc.identifier.issn | 2218-1989 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/71843 | - |
| dc.description.abstract | Drought intensity modifies the assimilatory pathway of glutathione (GSH) synthesis. Abscisic acid (ABA) is a representative signaling hormone involved in regulating plant stress responses. This study aimed to investigate an interactive regulation of sulfate and/or ABA in GSH metabolism and redox. The drought-responsive alterations in sulfate assimilation and GSH-based redox reactions were assessed relative to ABA responses on the time-course of drought intensity. Drought-responsive H2O2 concentrations were divided into two distinct phases-an initial 4 days of no change (psi(w) >= -0.49 MPa) and a phase of higher accumulation during the late phase of the drought (days 10-14; psi(w) <= -1.34 MPa). During the early phase of the drought, GSH/GSSG redox state turned to the slightly reduced state with a transient increase in GSH, resulting from a strong activation of H2O2 scavenging enzymes, ascorbate peroxidase (APOX) and glutathione reductase (GR). The late phase of the drought was characterized by a decrease in GSH due to cysteine accumulation, shifting GSH- and NADPH-based redox states to higher oxidization, increasing sulfate and ABA in xylem, and causing ABA accumulation in leaves. Regression analysis revealed that sulfate in xylem sap was positively correlated with H2O2 concentrations and ABA was closely related to decreases in the GSH pool and the oxidation of GSH catalyzed by glutathione peroxidase (GPOX). These results indicate that drought-induced oxidation proceeds through the suppression of GSH synthesis and further GSH oxidation in a sulfate-activated ABA-dependent manner. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) | - |
| dc.title | Drought-Induced Xylem Sulfate Activates the ABA-Mediated Regulation of Sulfate Assimilation and Glutathione Redox in <i>Brassica napus</i> Leaves | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.3390/metabo12121190 | - |
| dc.identifier.scopusid | 2-s2.0-85144720409 | - |
| dc.identifier.wosid | 000902839300001 | - |
| dc.identifier.bibliographicCitation | Metabolites, v.12, no.12 | - |
| dc.citation.title | Metabolites | - |
| dc.citation.volume | 12 | - |
| dc.citation.number | 12 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Biochemistry & Molecular Biology | - |
| dc.relation.journalWebOfScienceCategory | Biochemistry & Molecular Biology | - |
| dc.subject.keywordPlus | REACTIVE OXYGEN | - |
| dc.subject.keywordPlus | ARABIDOPSIS-THALIANA | - |
| dc.subject.keywordPlus | OXIDATIVE STRESS | - |
| dc.subject.keywordPlus | SALT STRESS | - |
| dc.subject.keywordPlus | SYSTEM | - |
| dc.subject.keywordPlus | TOLERANCE | - |
| dc.subject.keywordPlus | ACID | - |
| dc.subject.keywordPlus | PHOTOSYNTHESIS | - |
| dc.subject.keywordPlus | ACCUMULATION | - |
| dc.subject.keywordPlus | HOMEOSTASIS | - |
| dc.subject.keywordAuthor | abscisic acid | - |
| dc.subject.keywordAuthor | Brassica napus | - |
| dc.subject.keywordAuthor | drought | - |
| dc.subject.keywordAuthor | glutathione | - |
| dc.subject.keywordAuthor | redox | - |
| dc.subject.keywordAuthor | stress intensity | - |
| dc.subject.keywordAuthor | sulfate | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
