Cited 9 time in
A self-adaptive stochastic subgradient extragradient algorithm for the stochastic pseudomonotone variational inequality problem with application
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Wang, Shenghua | - |
| dc.contributor.author | Tao, Hongyuan | - |
| dc.contributor.author | Lin, Rongguang | - |
| dc.contributor.author | Cho, Yeol Je | - |
| dc.date.accessioned | 2024-12-02T21:30:45Z | - |
| dc.date.available | 2024-12-02T21:30:45Z | - |
| dc.date.issued | 2022-08 | - |
| dc.identifier.issn | 0044-2275 | - |
| dc.identifier.issn | 1420-9039 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/71794 | - |
| dc.description.abstract | In this paper, we introduce a stochastic self-adaptive subgradient extragradient approximation algorithm for solving the stochastic pseudomonotone variational inequality problem. The new method uses a variable stepsize generated by the simple computation at each iteration. Contrary to many known algorithms, the resulting algorithm can be easily implemented without prior knowledge of the Lipschitz constant of the mapping, and also without any line search procedure. The convergence and convergence rate of the algorithm are shown. Some numerical examples are given to illustrate the effectiveness of the proposed algorithm. Computation results show that our algorithm has the competitiveness over other related algorithms in the literature. Finally, we apply this algorithm to solve a traffic equilibrium problem. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Birkhauser Verlag | - |
| dc.title | A self-adaptive stochastic subgradient extragradient algorithm for the stochastic pseudomonotone variational inequality problem with application | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.1007/s00033-022-01730-y | - |
| dc.identifier.scopusid | 2-s2.0-85134242716 | - |
| dc.identifier.wosid | 000824951100001 | - |
| dc.identifier.bibliographicCitation | Zeitschrift für Angewandte Mathematik und Physik, v.73, no.4 | - |
| dc.citation.title | Zeitschrift für Angewandte Mathematik und Physik | - |
| dc.citation.volume | 73 | - |
| dc.citation.number | 4 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.subject.keywordPlus | PROJECTION-TYPE METHOD | - |
| dc.subject.keywordPlus | APPROXIMATION METHODS | - |
| dc.subject.keywordPlus | LINE SEARCH | - |
| dc.subject.keywordPlus | SCHEMES | - |
| dc.subject.keywordAuthor | Stochastic variational inequality | - |
| dc.subject.keywordAuthor | Stochastic approximation | - |
| dc.subject.keywordAuthor | Subgradient extragradient method | - |
| dc.subject.keywordAuthor | Monotone variational inequality | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
