Detailed Information

Cited 9 time in webofscience Cited 9 time in scopus
Metadata Downloads

A self-adaptive stochastic subgradient extragradient algorithm for the stochastic pseudomonotone variational inequality problem with application

Full metadata record
DC Field Value Language
dc.contributor.authorWang, Shenghua-
dc.contributor.authorTao, Hongyuan-
dc.contributor.authorLin, Rongguang-
dc.contributor.authorCho, Yeol Je-
dc.date.accessioned2024-12-02T21:30:45Z-
dc.date.available2024-12-02T21:30:45Z-
dc.date.issued2022-08-
dc.identifier.issn0044-2275-
dc.identifier.issn1420-9039-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/71794-
dc.description.abstractIn this paper, we introduce a stochastic self-adaptive subgradient extragradient approximation algorithm for solving the stochastic pseudomonotone variational inequality problem. The new method uses a variable stepsize generated by the simple computation at each iteration. Contrary to many known algorithms, the resulting algorithm can be easily implemented without prior knowledge of the Lipschitz constant of the mapping, and also without any line search procedure. The convergence and convergence rate of the algorithm are shown. Some numerical examples are given to illustrate the effectiveness of the proposed algorithm. Computation results show that our algorithm has the competitiveness over other related algorithms in the literature. Finally, we apply this algorithm to solve a traffic equilibrium problem.-
dc.language영어-
dc.language.isoENG-
dc.publisherBirkhauser Verlag-
dc.titleA self-adaptive stochastic subgradient extragradient algorithm for the stochastic pseudomonotone variational inequality problem with application-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.1007/s00033-022-01730-y-
dc.identifier.scopusid2-s2.0-85134242716-
dc.identifier.wosid000824951100001-
dc.identifier.bibliographicCitationZeitschrift für Angewandte Mathematik und Physik, v.73, no.4-
dc.citation.titleZeitschrift für Angewandte Mathematik und Physik-
dc.citation.volume73-
dc.citation.number4-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusPROJECTION-TYPE METHOD-
dc.subject.keywordPlusAPPROXIMATION METHODS-
dc.subject.keywordPlusLINE SEARCH-
dc.subject.keywordPlusSCHEMES-
dc.subject.keywordAuthorStochastic variational inequality-
dc.subject.keywordAuthorStochastic approximation-
dc.subject.keywordAuthorSubgradient extragradient method-
dc.subject.keywordAuthorMonotone variational inequality-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Yeol Je photo

Cho, Yeol Je
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE