Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Randomized Quaternion Minimal Gated Unit for sleep stage classification

Full metadata record
DC Field Value Language
dc.contributor.authorNuriye, Bezawit Habtamu-
dc.contributor.authorSeo, Hyeon-
dc.contributor.authorOh, Beom-Seok-
dc.date.accessioned2024-12-02T21:30:42Z-
dc.date.available2024-12-02T21:30:42Z-
dc.date.issued2024-12-
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/71781-
dc.description.abstractAutomated sleep stage classification is imperative for detecting sleep-related disorders. Previous studies predominantly favored single-channel sleep signals for their computational efficiency. However, the present research endeavor advances a novel approach, Randomized Quaternion Minimal Gated Unit (RQMGU), for multichannel sleep stage classification. RQMGU integrates Minimal Gated Unit, a simplified variant of traditional Recurrent Neural Networks, and employs quaternions to capture internal channel dependencies. Additionally, Random Projection is seamlessly integrated as a data representation mechanism, optimizing efficiency-performance trade-offs without employing dimensionality reduction. Despite incorporating multiple channels, RQMGU maintains a parsimonious architecture, achieving up to a substantial 52-fold reduction in training parameters as opposed to compared models, resulting in significantly lower computational resource requirements. Empirical findings on the Sleep-EDF-78 dataset underscore the efficacy of RQMGU, demonstrating comparable accuracy to contemporary baseline methods. © 2024 Elsevier Ltd-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier Ltd-
dc.titleRandomized Quaternion Minimal Gated Unit for sleep stage classification-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.eswa.2024.124719-
dc.identifier.scopusid2-s2.0-85198518333-
dc.identifier.wosid001271544400001-
dc.identifier.bibliographicCitationExpert Systems with Applications, v.255-
dc.citation.titleExpert Systems with Applications-
dc.citation.volume255-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaOperations Research & Management Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryOperations Research & Management Science-
dc.subject.keywordPlusNEURAL-NETWORK-
dc.subject.keywordPlusEEG-
dc.subject.keywordPlusCHANNEL-
dc.subject.keywordAuthorMinimal Gated Unit-
dc.subject.keywordAuthorQuaternion-
dc.subject.keywordAuthorRandom Projection-
dc.subject.keywordAuthorSleep stage classification-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Seo, Hyeon photo

Seo, Hyeon
IT공과대학 (컴퓨터공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE