Cited 5 time in
Generalized <i>k</i>-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Zhang, Zhiqiang | - |
| dc.contributor.author | Farid, Ghulam | - |
| dc.contributor.author | Mehmood, Sajid | - |
| dc.contributor.author | Jung, Chahn-Yong | - |
| dc.contributor.author | Yan, Tao | - |
| dc.date.accessioned | 2024-12-02T21:00:56Z | - |
| dc.date.available | 2024-12-02T21:00:56Z | - |
| dc.date.issued | 2022-02 | - |
| dc.identifier.issn | 2075-1680 | - |
| dc.identifier.issn | 2075-1680 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/71771 | - |
| dc.description.abstract | Mathematical inequalities have gained importance and popularity due to the application of integral operators of different types. The present paper aims to give Chebyshev-type inequalities for generalized k-integral operators involving the Mittag-Leffler function in kernels. Several new results can be deduced for different integral operators, along with Riemann-Liouville fractional integrals by substituting convenient parameters. Moreover, the presented results generalize several already published inequalities. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | MDPI AG | - |
| dc.title | Generalized <i>k</i>-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.3390/axioms11020082 | - |
| dc.identifier.scopusid | 2-s2.0-85125498602 | - |
| dc.identifier.wosid | 000762688400001 | - |
| dc.identifier.bibliographicCitation | Axioms, v.11, no.2 | - |
| dc.citation.title | Axioms | - |
| dc.citation.volume | 11 | - |
| dc.citation.number | 2 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.subject.keywordPlus | POLYA-SZEGO | - |
| dc.subject.keywordPlus | INTEGRAL-INEQUALITIES | - |
| dc.subject.keywordPlus | EXTENSION | - |
| dc.subject.keywordAuthor | Chebyshev inequality | - |
| dc.subject.keywordAuthor | fractional integrals | - |
| dc.subject.keywordAuthor | Mittag-Leffler function | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
