Detailed Information

Cited 2 time in webofscience Cited 2 time in scopus
Metadata Downloads

Duo Property on the Monoid of Regular Elements

Full metadata record
DC Field Value Language
dc.contributor.authorHong, Chan Yong-
dc.contributor.authorKim, Hong Kee-
dc.contributor.authorKim, Nam Kyun-
dc.contributor.authorKwak, Tai Keun-
dc.contributor.authorLee, Yang-
dc.date.accessioned2024-12-02T21:00:52Z-
dc.date.available2024-12-02T21:00:52Z-
dc.date.issued2022-06-
dc.identifier.issn1005-3867-
dc.identifier.issn0219-1733-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/71724-
dc.description.abstractWe study the right duo property on regular elements, and we say that rings with this property are right DR. It is first shown that the right duo property is preserved by right quotient rings when the given rings are right DR. We prove that the polynomial ring over a ring R is right DR if and only if R is commutative. It is also proved that for a prime number p, the group ring KG of a finite p-group G over a field K of characteristic p is right DR if and only if it is right duo, and that there exists a group ring KG that is neither DR nor duo when G is not a p-group.-
dc.format.extent14-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Mathematics, Chinese Academy of Sciences-
dc.titleDuo Property on the Monoid of Regular Elements-
dc.typeArticle-
dc.publisher.location싱가폴-
dc.identifier.doi10.1142/S1005386722000165-
dc.identifier.scopusid2-s2.0-85132620441-
dc.identifier.wosid000789118200003-
dc.identifier.bibliographicCitationAlgebra Colloquium, v.29, no.02, pp 203 - 216-
dc.citation.titleAlgebra Colloquium-
dc.citation.volume29-
dc.citation.number02-
dc.citation.startPage203-
dc.citation.endPage216-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordPlusCLASSICAL RINGS-
dc.subject.keywordAuthorright DR ring-
dc.subject.keywordAuthorright duo ring-
dc.subject.keywordAuthorquotient ring-
dc.subject.keywordAuthor(skew) polynomial ring-
dc.subject.keywordAuthorgroup ring-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE