Detailed Information

Cited 4 time in webofscience Cited 4 time in scopus
Metadata Downloads

Laser powder bed fusion for AI assisted digital metal components

Full metadata record
DC Field Value Language
dc.contributor.authorSeo, Eunhyeok-
dc.contributor.authorSung, Hyokyung-
dc.contributor.authorJeon, Hongryoung-
dc.contributor.authorKim, Hayeol-
dc.contributor.authorKim, Taekyeong-
dc.contributor.authorPark, Sangeun-
dc.contributor.authorLee, Min Sik-
dc.contributor.authorMoon, Seung Ki-
dc.contributor.authorKim, Jung Gi-
dc.contributor.authorChung, Hayoung-
dc.contributor.authorChoi, Seong-Kyum-
dc.contributor.authorYu, Ji-Hun-
dc.contributor.authorKim, Kyung Tae-
dc.contributor.authorPark, Seong Jin-
dc.contributor.authorKim, Namhun-
dc.contributor.authorJung, Im Doo-
dc.date.accessioned2024-12-02T21:00:47Z-
dc.date.available2024-12-02T21:00:47Z-
dc.date.issued2022-10-
dc.identifier.issn1745-2759-
dc.identifier.issn1745-2767-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/71646-
dc.description.abstractThis paper proposes a novel method to impart intelligence to metal parts using additive manufacturing. A sensor-embedded metal bracket is prototyped via a metal powder bed fusion process to recognise partial screw loosening or total screw missing or identify the source of vibration with the assistance of artificial intelligence (AI). The digital metal bracket can recognise subtle changes in the screw fixation state with 90% accuracy and identify unknown sources of vibration with 84% accuracy. The von Mises stress distribution in the prototyped metal bracket is evaluated using a finite element analysis, which is learned by AI to match the real-time deformation analysis of the metal bracket in augmented reality. The proposed prototype can contribute to hyper-connectivity for developing next-generation metal-based mechanical components.-
dc.format.extent15-
dc.language영어-
dc.language.isoENG-
dc.publisherTaylor & Francis-
dc.titleLaser powder bed fusion for AI assisted digital metal components-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1080/17452759.2022.2068804-
dc.identifier.scopusid2-s2.0-85132648133-
dc.identifier.wosid000791127600001-
dc.identifier.bibliographicCitationVirtual and Physical Prototyping, v.17, no.4, pp 806 - 820-
dc.citation.titleVirtual and Physical Prototyping-
dc.citation.volume17-
dc.citation.number4-
dc.citation.startPage806-
dc.citation.endPage820-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryEngineering, Manufacturing-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusPERSPECTIVES-
dc.subject.keywordPlusSENSORS-
dc.subject.keywordAuthorLaser powder bed fusion-
dc.subject.keywordAuthorartificial intelligence-
dc.subject.keywordAuthorsensor embedding-
dc.subject.keywordAuthordigital metal component-
dc.subject.keywordAuthoraugmented reality-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jung Gi photo

Kim, Jung Gi
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE