Detailed Information

Cited 20 time in webofscience Cited 19 time in scopus
Metadata Downloads

Accelerated Design of High-Efficiency Lead-Free Tin Perovskite Solar Cells via Machine Learning

Full metadata record
DC Field Value Language
dc.contributor.authorBak, Taeju-
dc.contributor.authorKim, Kyusun-
dc.contributor.authorSeo, Eunhyeok-
dc.contributor.authorHan, Jiye-
dc.contributor.authorSung, Hyokyung-
dc.contributor.authorJeon, Il-
dc.contributor.authorJung, Im Doo-
dc.date.accessioned2024-12-02T21:00:39Z-
dc.date.available2024-12-02T21:00:39Z-
dc.date.issued2023-01-
dc.identifier.issn2288-6206-
dc.identifier.issn2198-0810-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/71546-
dc.description.abstractTin (Sn) perovskite solar cells (PSCs) are the most promising alternatives to lead (Pb) PSCs, which pose a theoretical limitation on efficiency and an environmental threat. However, Sn PSCs are still in the early stage of development in comparison with the conventional Pb PSCs, and still require a considerable amount of time and effort to obtain an optimum structure via manual trial-and-error methods. Herein, we propose a machine learning (ML) approach to accelerate the design of the optimized structure of Sn PSCs with high efficiency. The proposed method uses K-fold cross-validation-based deep neural networks, thus maximizing the prediction and recommendation accuracy with a limited amount of experimental data recorded for the Sn PSCs. Our approach establishes a new appropriate Sn-PSC design based on an ML recommendation algorithm. The validation experiment reveals a three times higher efficiency of the ML-designed Sn PSCs (5.57%) than that of those designed through unguided fabrication trials (avg. 1.72%).-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherKOREAN SOC PRECISION ENG-
dc.titleAccelerated Design of High-Efficiency Lead-Free Tin Perovskite Solar Cells via Machine Learning-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.1007/s40684-022-00417-z-
dc.identifier.scopusid2-s2.0-85126089573-
dc.identifier.wosid000767697000001-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, v.10, no.1, pp 109 - 121-
dc.citation.titleINTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY-
dc.citation.volume10-
dc.citation.number1-
dc.citation.startPage109-
dc.citation.endPage121-
dc.type.docTypeArticle-
dc.identifier.kciidART002919748-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryGreen & Sustainable Science & Technology-
dc.relation.journalWebOfScienceCategoryEngineering, Manufacturing-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.subject.keywordPlusHALIDE PEROVSKITES-
dc.subject.keywordPlusIODIDE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorDeep neural network-
dc.subject.keywordAuthorRecommendation algorithm-
dc.subject.keywordAuthorPerovskite solar cells-
dc.subject.keywordAuthorLead-free perovskites-
dc.subject.keywordAuthorTin perovskites-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE