Detailed Information

Cited 3 time in webofscience Cited 4 time in scopus
Metadata Downloads

Non-fragile reliable robust H<sub>∞</sub> controller synthesis for linear uncertain systems with integral quadratic constraints

Authors
Harno, Hendra G.Sim, Allan Hua Heng
Issue Date
Dec-2021
Publisher
Springer International Publishing AG
Keywords
Fault-tolerant control; Reliable control; Non-fragile control; Robust H-infinity control; Integral quadratic constraint
Citation
International Journal of Dynamics and Control, v.9, no.4, pp 1478 - 1490
Pages
13
Indexed
SCOPUS
Journal Title
International Journal of Dynamics and Control
Volume
9
Number
4
Start Page
1478
End Page
1490
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/71513
DOI
10.1007/s40435-020-00740-w
ISSN
2195-268X
2195-2698
Abstract
This paper presents a new approach to constructing a state-feedback fault-tolerant controller based on a robust H-infinity control method. A class of linear time-invariant systems under consideration contains structured uncertainties satisfying integral quadratic constraints. A stabilizing solution to a parameterized H-infinity-type Riccati equation is involved in constructing the controller such that the resulting closed-loop system is absolutely stable with a specified level of disturbance attenuation. This approach yields a robust controller that is not only reliable in the presence of actuator faults, but also non-fragile against uncertainties within itself. Moreover, a differential evolution algorithm is applied to optimize performance of the closed-loop system. Numerical examples are also presented to demonstrate the efficacy of our reliable robust control approach. It is shown in the examples that the disturbance attenuation levels of the reliable robust H-infinity controllers synthesized using our approach are lower than those of other reliable H-infinity controllers.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE