Detailed Information

Cited 5 time in webofscience Cited 4 time in scopus
Metadata Downloads

Development of prediction models for distinguishable cognitive trajectories in patients with amyloid positive mild cognitive

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Seung Joo-
dc.contributor.authorWoo, Sook-Young-
dc.contributor.authorKim, Young Ju-
dc.contributor.authorJang, Hyemin-
dc.contributor.authorKim, Hee Jin-
dc.contributor.authorNa, Duk L.-
dc.contributor.authorKim, Seonwoo-
dc.contributor.authorSeo, Sang Won-
dc.date.accessioned2024-07-18T07:30:13Z-
dc.date.available2024-07-18T07:30:13Z-
dc.date.issued2022-06-
dc.identifier.issn0197-4580-
dc.identifier.issn1558-1497-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/71281-
dc.description.abstractThe clinical outcomes of patients with amyloid beta-positive (A beta+ ) mild cognitive impairment (MCI) are heterogeneous. We therefore developed prediction models for distinguishable cognitive trajectories in A beta+ participants with MCI. We included 238 A beta+ participants with MCI from the Alzheimer's Disease Neuroimaging Initiative to develop a group-based trajectory model and 63 A beta+ participants with MCI from the Samsung Medical Center for external validation. Three distinguishable classes, slow decliners (18.5%), intermediate decliners (42.9%), and fast decliners (38.7%), were identified. Intermediate decliners were associated with older age, higher AV45 standardized uptake value ratios (SUVR) and lower fluorodeoxyglucose (FDG) SUVR than slow decliners. Fast decliners were associated with older age, presence of APOE epsilon 4 , higher AV45 SUVR and lower FDG SUVR than slow decliners. Prediction models of cognitive decline showed good discrimination and calibration capabilities in the development and validation data sets. Our analysis yields novel insights into the cognitive trajectories of A beta+ patients with MCI, which will facilitate their effective stratification in A beta-targeted clinical trials. (c) 2022 Elsevier Inc. All rights reserved.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleDevelopment of prediction models for distinguishable cognitive trajectories in patients with amyloid positive mild cognitive-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1016/j.neurobiolaging.2022.02.012-
dc.identifier.scopusid2-s2.0-85127325623-
dc.identifier.wosid001040927800001-
dc.identifier.bibliographicCitationNeurobiology of Aging, v.114, pp 84 - 93-
dc.citation.titleNeurobiology of Aging-
dc.citation.volume114-
dc.citation.startPage84-
dc.citation.endPage93-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaGeriatrics & Gerontology-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.relation.journalWebOfScienceCategoryGeriatrics & Gerontology-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.subject.keywordPlusNEUROIMAGING INITIATIVE ADNI-
dc.subject.keywordPlusALZHEIMERS-DISEASE-
dc.subject.keywordPlusIMPAIRMENT-
dc.subject.keywordPlusPROGRESSION-
dc.subject.keywordPlusBIOMARKERS-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordPlusDEMENTIA-
dc.subject.keywordPlusOUTCOMES-
dc.subject.keywordAuthorMild cognitive impairment-
dc.subject.keywordAuthorAlzheimer's disease-
dc.subject.keywordAuthorGroup-based trajectory analysis model-
dc.subject.keywordAuthorPrediction model-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Altmetrics

Total Views & Downloads

BROWSE