Detailed Information

Cited 7 time in webofscience Cited 8 time in scopus
Metadata Downloads

Unlocking high-energy solid-state lithium-sulfur batteries with an innovative double-layer hybrid solid electrolyte

Full metadata record
DC Field Value Language
dc.contributor.authorLiu, Ying-
dc.contributor.authorHan, Jinseok-
dc.contributor.authorBaek, Dong-Ho-
dc.contributor.authorWoo Kim, Hyun-
dc.contributor.authorAhn, Jou-Hyeon-
dc.contributor.authorKim, Jae-Kwang-
dc.date.accessioned2024-07-17T09:00:17Z-
dc.date.available2024-07-17T09:00:17Z-
dc.date.issued2024-09-
dc.identifier.issn1385-8947-
dc.identifier.issn1873-3212-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/71262-
dc.description.abstractThis study developed a novel double-layer hybrid solid electrolyte (DLHSE) to address the limitations of solid-state lithium–sulfur (Li–S) batteries, which include poor electronic/ionic conductivity, interfacial chemical/electrochemical instability, and substantial interfacial resistance between the solid electrolyte and electrodes. The DLHSE comprises an ion-conducting ceramic, electrochemically stable polymer, and ether-based liquid electrolyte. Specifically, the dual-layer ceramic skeleton comprises an inorganic NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP) layer facing the cathode to facilitate Li+ migration at the interface and a garnet-type Li7La3Zr2O12 (LLZO) layer facing the anode to suppress Li dendrite formation and mitigate the “shuttle effect”. The polymer binder (PVDF–TrFE) can create a three-dimensional network to enhance structural compactness and stability. The penetrating ether-based electrolyte can facilitate Li+ transfer and reinforce the interfacial contact. Furthermore, a well-designed porous carbon rod/sulfur (PCR/S) composite with an ultrahigh sulfur content of 80 wt% was prepared as the cathode. Consequently, the novel structural configuration with PCR/S cathode and DLHSE, not only demonstrated excellent coin-cell performance with a capacity retention of 802 mAh g−1 after 500 cycles at 0.2C, but also an outstanding A-h-level pouch cell with an impressive discharge capacity of 7 Ah at 0.1C. © 2024 Elsevier B.V.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleUnlocking high-energy solid-state lithium-sulfur batteries with an innovative double-layer hybrid solid electrolyte-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.1016/j.cej.2024.153647-
dc.identifier.scopusid2-s2.0-85198013434-
dc.identifier.wosid001267106700001-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.496-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume496-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordAuthorDendrite-free lithium-
dc.subject.keywordAuthorDouble-layer hybrid solid electrolyte-
dc.subject.keywordAuthorMulti-functional cathode-
dc.subject.keywordAuthorShuttle effect suppression-
dc.subject.keywordAuthorSolid-state Li–S batteries-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles
공학계열 > 화학공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE