Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Riemann hypothesis for period polynomials for cusp forms on Γ<sub>0</sub>(N)

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Soyoung-
dc.date.accessioned2024-06-10T06:00:29Z-
dc.date.available2024-06-10T06:00:29Z-
dc.date.issued2024-09-
dc.identifier.issn1793-0421-
dc.identifier.issn1793-7310-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/70799-
dc.description.abstractWe prove that for even integer k, almost all of zeros of the period polynomial associated to a cusp form of weight k on Gamma(0)(N) are on the circle |z| = 1/root N under some conditions.-
dc.format.extent17-
dc.language영어-
dc.language.isoENG-
dc.publisherWorld Scientific Publishing Co-
dc.titleRiemann hypothesis for period polynomials for cusp forms on Γ&lt;sub&gt;0&lt;/sub&gt;(N)-
dc.typeArticle-
dc.publisher.location싱가폴-
dc.identifier.doi10.1142/S1793042124500982-
dc.identifier.scopusid2-s2.0-85194931766-
dc.identifier.wosid001236120400001-
dc.identifier.bibliographicCitationInternational Journal of Number Theory, v.20, no.08, pp 1 - 17-
dc.citation.titleInternational Journal of Number Theory-
dc.citation.volume20-
dc.citation.number08-
dc.citation.startPage1-
dc.citation.endPage17-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordAuthorCusp form-
dc.subject.keywordAuthorperiod polynomial-
dc.subject.keywordAuthorRiemann hypothesis-
dc.subject.keywordAuthorzero-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, So Young photo

Choi, So Young
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE