Detailed Information

Cited 2 time in webofscience Cited 4 time in scopus
Metadata Downloads

Intergranular amorphous film in GeO2-enriched Li1.5Al0.5Ti1.5(PO4)3 composite electrolytes for high-performance solid-state lithium-ion batteries

Full metadata record
DC Field Value Language
dc.contributor.authorShin, Seulgi-
dc.contributor.authorKang, Sung Hyun-
dc.contributor.authorKim, Geon-Hee-
dc.contributor.authorKim, Do-yeon-
dc.contributor.authorJung, Yong-Jae-
dc.contributor.authorHyun, Da-Eun-
dc.contributor.authorKim, Jeong-Yeon-
dc.contributor.authorHur, Junpyo-
dc.contributor.authorYuk, Jong Min-
dc.contributor.authorPark, Jungjae-
dc.contributor.authorLee, Dong-Won-
dc.contributor.authorLee, Kyu Hyoung-
dc.contributor.authorNam, Woo Hyun-
dc.contributor.authorCho, Jung Young-
dc.contributor.authorOh, Jong-Min-
dc.contributor.authorKim, Hyun-Sik-
dc.contributor.authorHa, Jae-Geun-
dc.contributor.authorMoon, Kyoung-Seok-
dc.contributor.authorShin, Weon Ho-
dc.date.accessioned2024-04-30T02:30:21Z-
dc.date.available2024-04-30T02:30:21Z-
dc.date.issued2024-07-
dc.identifier.issn1359-8368-
dc.identifier.issn1879-1069-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/70423-
dc.description.abstractSolid-state electrolytes have emerged as a key area of development in the field of Li-ion batteries owing to safety concerns surrounding liquid electrolytes. Among solid-state electrolytes, Li1.5Al0.5Ti1.5(PO4)3 (LATP), a NASICON-type material, is a leading candidate owing to its promising ionic conductivity, chemical and environmental stability, and cost-effectiveness. However, its ionic conductivity is limited by grain-boundary scattering, which hinders its broader adoption. Herein, we introduce a novel grain-boundary engineering strategy for the LATP electrolyte system using typical solid-state method, wherein a Ge-rich liquid phase spontaneously forms at the grain boundaries of GeO2-enriched LATP during synthesis, producing an intergranular amorphous film in the final material that significantly enhances Li-ion transport at the grain boundaries. With an optimal content of 4 wt% GeO2, the ionic conductivity reaches 8.92 × 10−4 S cm−1—an eightfold increase compared to that of pristine LATP. This high ionic conductivity also bestows 4 wt% GeO2-LATP with excellent cell performance, with a symmetric Li/4 wt% GeO2-LATP/Li cell exhibiting stable operation for over 500 h with low overpotentials. Our findings underscore the importance of grain-boundary engineering in advancing solid-state electrolytes and pave the way for the commercialization of next-generation all-solid-state Li-ion batteries. © 2024 Elsevier Ltd-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier Ltd-
dc.titleIntergranular amorphous film in GeO2-enriched Li1.5Al0.5Ti1.5(PO4)3 composite electrolytes for high-performance solid-state lithium-ion batteries-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.compositesb.2024.111478-
dc.identifier.scopusid2-s2.0-85190849212-
dc.identifier.wosid001232698400001-
dc.identifier.bibliographicCitationComposites Part B: Engineering, v.280-
dc.citation.titleComposites Part B: Engineering-
dc.citation.volume280-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Composites-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusLI1.5AL0.5GE1.5(PO4)(3)-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusCONDUCTORS-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusINSIGHTS-
dc.subject.keywordPlusAL-
dc.subject.keywordPlusTI-
dc.subject.keywordAuthorAll-solid-state Li-ion battery-
dc.subject.keywordAuthorAmorphous film-
dc.subject.keywordAuthorGrainboundary engineering-
dc.subject.keywordAuthorNASICON-Type-
dc.subject.keywordAuthorSolid electrolyte-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Moon, Kyoung Seok photo

Moon, Kyoung Seok
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE