Cited 0 time in
Kähler-Einstein metrics on smooth Fano toroidal symmetric varieties of type AIII
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Hong, Kyusik | - |
| dc.contributor.author | Hwang, DongSeon | - |
| dc.contributor.author | Park, Kyeong-Dong | - |
| dc.date.accessioned | 2024-04-23T05:00:19Z | - |
| dc.date.available | 2024-04-23T05:00:19Z | - |
| dc.date.issued | 2024-06 | - |
| dc.identifier.issn | 0129-167X | - |
| dc.identifier.issn | 1793-6519 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/70365 | - |
| dc.description.abstract | The wonderful compactification Xm of a symmetric homogeneous space of type AIII(2,m) for each m >= 4 is Fano, and its blowup Ym along the unique closed orbit is Fano if m >= 5 and Calabi-Yau if m = 4. Using a combinatorial criterion for K-polystability of smooth Fano spherical varieties obtained by Delcroix, we prove that Xm admits a Kahler-Einstein metric for each m >= 4 and Ym admits a Kahler-Einstein metric if and only if m = 4, 5. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | World Scientific Publishing Co | - |
| dc.title | Kähler-Einstein metrics on smooth Fano toroidal symmetric varieties of type AIII | - |
| dc.type | Article | - |
| dc.publisher.location | 싱가폴 | - |
| dc.identifier.doi | 10.1142/S0129167X2450023X | - |
| dc.identifier.scopusid | 2-s2.0-85190524296 | - |
| dc.identifier.wosid | 001200340200001 | - |
| dc.identifier.bibliographicCitation | International Journal of Mathematics, v.35, no.07 | - |
| dc.citation.title | International Journal of Mathematics | - |
| dc.citation.volume | 35 | - |
| dc.citation.number | 07 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.subject.keywordPlus | KAHLER-EINSTEIN METRICS | - |
| dc.subject.keywordPlus | MONGE-AMPERE EQUATIONS | - |
| dc.subject.keywordPlus | GREATEST LOWER BOUNDS | - |
| dc.subject.keywordPlus | RICCI CURVATURE | - |
| dc.subject.keywordPlus | K-STABILITY | - |
| dc.subject.keywordPlus | COMPLEX-SURFACES | - |
| dc.subject.keywordAuthor | Symmetric variety | - |
| dc.subject.keywordAuthor | wonderful compactification | - |
| dc.subject.keywordAuthor | Kahler-Einstein metric | - |
| dc.subject.keywordAuthor | K-stability | - |
| dc.subject.keywordAuthor | moment polytope | - |
| dc.subject.keywordAuthor | spherical variety | - |
| dc.subject.keywordAuthor | greatest Ricci lower bound | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0534
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
