Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Aircraft Control Surface Damage Detection and Classification Using Autoencoder

Full metadata record
DC Field Value Language
dc.contributor.authorSong, Minjae-
dc.contributor.authorMoon, Yong Ho-
dc.contributor.authorKim, Byoung Soo-
dc.date.accessioned2024-04-08T02:30:14Z-
dc.date.available2024-04-08T02:30:14Z-
dc.date.issued2024-03-
dc.identifier.issn1976-5622-
dc.identifier.issn2233-4335-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/70099-
dc.description.abstractThis paper proposes an algorithm for detection and classifying aircraft control surface damage using an AI model for cause investigation. Control surface damage on fixed-wing aircraft causes structural and aerodynamic changes that affect the flight control system, which was developed using routine flight data; therefore, knowing the type of damage is essential. The proposed algorithm employs AI models for aircraft damage detection (ADD) and damage type classification (DTC) using routine flight and damage occurrence data. The ADD model uses unsupervised learning, whereas the DTC model uses transfer learning, allowing for effective learning even when abnormal data are small. Furthermore, the ADD model generates detection results using the mean absolute error (MAE) and the Mahalanobis distance. In contrast, the DTC model generates the final classification results using the probability accumulation values. The simulation results show that this AI model algorithm can detect control surface failure quickly and correctly identify damage types. © ICROS 2024.-
dc.format.extent8-
dc.language한국어-
dc.language.isoKOR-
dc.publisher제어·로봇·시스템학회-
dc.titleAircraft Control Surface Damage Detection and Classification Using Autoencoder-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.5302/J.ICROS.2024.23.0174-
dc.identifier.scopusid2-s2.0-85188267711-
dc.identifier.bibliographicCitationJournal of Institute of Control, Robotics and Systems, v.30, no.3, pp 183 - 190-
dc.citation.titleJournal of Institute of Control, Robotics and Systems-
dc.citation.volume30-
dc.citation.number3-
dc.citation.startPage183-
dc.citation.endPage190-
dc.type.docTypeArticle-
dc.identifier.kciidART003058811-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorAI (Artificial Intelligence)-
dc.subject.keywordAuthoranomaly detection-
dc.subject.keywordAuthorAutoencoder-
dc.subject.keywordAuthorBi-LSTM-
dc.subject.keywordAuthorclassification-
dc.subject.keywordAuthorCNN-
dc.subject.keywordAuthordeep learning-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > 기계항공우주공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Moon, Yong Ho photo

Moon, Yong Ho
대학원 (기계항공우주공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE