Detailed Information

Cited 2 time in webofscience Cited 3 time in scopus
Metadata Downloads

Efficient Resource Augmentation of Resource Constrained UAVs Through EdgeCPS

Full metadata record
DC Field Value Language
dc.contributor.authorHa, Sangil-
dc.contributor.authorChoi, Euteum-
dc.contributor.authorKo, Dongbeom-
dc.contributor.authorKang, Sungjoo-
dc.contributor.authorLee, Seongjin-
dc.date.accessioned2024-04-08T01:30:48Z-
dc.date.available2024-04-08T01:30:48Z-
dc.date.issued2023-06-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/70081-
dc.description.abstractWe propose an efficient Resource Augmentation Framework (RAF) for resource-constrained UAVs through EdgeCPS. Typical UAVs with small form factors have limited computation power which hinders their ability to perform critical or computation-intensive missions. By exploiting EdgeCPS, UAVs can get computational support from the EdgeCPS and diversity its missions. Existing solutions allow exploiting the EdgeCPS; however, the network overhead is too great that it cannot be adopted in resource-constrained UAVs. The proposed framework, RAF, provides Task Management Module (TMM) and Offloading Inference Module (OIM) to solve the issue. Using Raspberry Pi 4 as the mission computer for the UAV, RAF shows an inference performance of 11.9 FPS in the ResNet-18 model, whereas the existing work shows about 6 FPS.-
dc.format.extent4-
dc.language영어-
dc.language.isoENG-
dc.publisherASSOC COMPUTING MACHINERY-
dc.titleEfficient Resource Augmentation of Resource Constrained UAVs Through EdgeCPS-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1145/3555776.3577846-
dc.identifier.scopusid2-s2.0-85162871284-
dc.identifier.wosid001124308100098-
dc.identifier.bibliographicCitation38th Annual ACM Symposium on Applied Computing, SAC 2023, pp 679 - 682-
dc.citation.title38th Annual ACM Symposium on Applied Computing, SAC 2023-
dc.citation.startPage679-
dc.citation.endPage682-
dc.type.docTypeProceedings Paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryComputer Science, Theory & Methods-
dc.subject.keywordAuthorEdgeCPS-
dc.subject.keywordAuthorMassive Things-
dc.subject.keywordAuthorPartitioning AI-
dc.subject.keywordAuthorEdge Cloud Computing-
dc.subject.keywordAuthorCyber-Physical System (CPS)-
dc.subject.keywordAuthorComputation Offloading-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > AI융합공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Altmetrics

Total Views & Downloads

BROWSE