Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Designing High-Porosity Porous Structures with Complex Geometries for Enhanced Thermal Conductivity Using Selective Laser Melting and Heat Treatment

Authors
Tang, HulinZhang, XiangZhang, ChenpingZhou, TianGuo, ShiyueXu, GaopengZhao, RushengHur, BoyoungYue, Xuezheng
Issue Date
May-2024
Publisher
Kexue Chubaneshe/Science Press
Keywords
Heat treatment; Porous lattice structure; Selective laser melting; Thermal conductivity
Citation
Acta Metallurgica Sinica (English Letters), v.37, no.5, pp 808 - 824
Pages
17
Indexed
SCIE
SCOPUS
Journal Title
Acta Metallurgica Sinica (English Letters)
Volume
37
Number
5
Start Page
808
End Page
824
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/70053
DOI
10.1007/s40195-024-01672-6
ISSN
1006-7191
2194-1289
Abstract
Rapid advancements in the aerospace industry necessitate the development of unified, lightweight and thermally conductive structures. Integrating complex geometries, including bionic and porous structures, is paramount in thermally conductive structures to attain improved thermal conductivity. The design of two high-porosity porous lattice structures was inspired by pomelo peel structure, using Voronoi parametric design. By combining characteristic elements of two high-porostructuressity porous lattice structures designed, a novel high-porosity porous gradient structure is created. This structure is based on gradient design. Utilizing selective laser melting (SLM), fabrication comprises three. Steady-state thermal characteristics are evaluated via finite element analysis (FEA). The experimental thermal conductivity measurements correlate well with simulation results, validating the sequence of K_L as the highest, followed by D_K_L and then D_L. Heat treatment significantly improves thermal conductivity, enhancing the base material by about 45.6% and porous structured samples by approximately 43.7%. © The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hur, Boyoung photo

Hur, Boyoung
공과대학 (나노신소재공학부금속재료공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE